988 resultados para Acoustic method
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A multichannel spherical speaker array allows, together with a spherical microphones array, the measurement of the MIMO (Multiple Input Multiple Output) acoustic impulse response of an environment capturing meaningful information about propagation of sound between source an receiver. The mathematical framework for extracting arbitrary directivity virtual microphones from real microphones array signals is recalled and the application of the same method to the speakers array to generate arbitrary directivity source is presented. A convenient solutions for the construction and calibration of speakers spherical array for measurement purposes is illustrated. The postprocessing technique developed to compute and visualize acoustic path between source and receiver from measured MIMO impulse response is discussed. Real word results from measurement in a small theater are shown.
Resumo:
An experimental investigation into the Acoustic Emission (AE) response of sand has been undertaken, and the use of AE as a method of yield point identification has been assessed. Dense, saturated samples of sand were tested in conventional triaxial apparatus. The measurements of stresses and strains were carried out according to current research practice. The AE monitoring system was integrated with the soil mechanics equipment in such a way that sample disturbance was minimised. During monotonically loaded, constant cell pressure tests the total number of events recorded was found to increase at an increasing rate in a manner which may be approximated by a power law. The AE response of the sand was found to be both stress level and stress path dependent. Undrained constant cell pressure tests showed that, unlike drained tests, the AE event rate increased at an increasing rate; this was shown to correlate with the mean effective stress variation. The stress path dependence was most noticeable in extension tests, where the number of events recorded was an order of magnitude less than that recorded in comparable compression tests. This stress path dependence was shown to be due to the differences in the work done by the external stresses. In constant cell pressure tests containing unload/reload cycles it was found that yield could be identified from a discontinuity in the event rate/time curve which occurred during reloading. Further tests involving complex stress paths showed that AE was a useful method of yield point identification. Some tests involving large stress reversals were carried out, and AE identified the inverse yield points more distinctly than conventional methods of yield point identification.
Resumo:
An inverse problem is considered where the structure of multiple sound-soft planar obstacles is to be determined given the direction of the incoming acoustic field and knowledge of the corresponding total field on a curve located outside the obstacles. A local uniqueness result is given for this inverse problem suggesting that the reconstruction can be achieved by a single incident wave. A numerical procedure based on the concept of the topological derivative of an associated cost functional is used to produce images of the obstacles. No a priori assumption about the number of obstacles present is needed. Numerical results are included showing that accurate reconstructions can be obtained and that the proposed method is capable of finding both the shapes and the number of obstacles with one or a few incident waves.
Resumo:
Fisheries independent data on relatively unstudied nekton communities were used to explore the efficacy of new tools to be applied in the investigation of shallow coastal coral reef habitats. These data obtained through concurrent diver visual and acoustic surveys provided descriptions of spatial community distribution patterns across seasonal temporal scales in a previously undocumented region. Fish density estimates by both diver and acoustic methodologies showed a general agreement in ability to detect distributional patterns across reef tracts, though magnitude of density estimates were different. Fish communities in southeastern Florida showed significant trends in spatial distribution and seasonal abundance, with higher estimates of biomass obtained in the dry season. Further, community composition shifted across reef tracts and seasons as a function of the movements of several key reef species.
Resumo:
Underwater sound is very important in the field of oceanography where it is used for remote sensing in much the same way that radar is used in atmospheric studies. One way to mathematically model sound propagation in the ocean is by using the parabolic-equation method, a technique that allows range dependent environmental parameters. More importantly, this method can model sound transmission where the source emits either a pure tone or a short pulse of sound. Based on the parabolic approximation method and using the split-step Fourier algorithm, a computer model for underwater sound propagation was designed and implemented. This computer model differs from previous models in its use of the interactive mode, structured programming, modular design, and state-of-the-art graphics displays. In addition, the model maximizes the efficiency of computer time through synchronization of loosely coupled dual processors and the design of a restart capability. Since the model is designed for adaptability and for users with limited computer skills, it is anticipated that it will have many applications in the scientific community.
Resumo:
This dissertation presents a calibration procedure for a pressure velocity probe. The dissertation is divided into four main chapters. The first chapter is divided into six main sections. In the firsts two, the wave equation in fluids and the velocity of sound in gases are calculated, the third section contains a general solution of the wave equation in the case of plane acoustic waves. Section four and five report the definition of the acoustic impedance and admittance, and the practical units the sound level is measured with, i.e. the decibel scale. Finally, the last section of the chapter is about the theory linked to the frequency analysis of a sound wave and includes the analysis of sound in bands and the discrete Fourier analysis, with the definition of some important functions. The second chapter describes different reference field calibration procedures that are used to calibrate the P-V probes, between them the progressive plane wave method, which is that has been used in this work. Finally, the last section of the chapter contains a description of the working principles of the two transducers that have been used, with a focus on the velocity one. The third chapter of the dissertation is devoted to the explanation of the calibration set up and the instruments used for the data acquisition and analysis. Since software routines were extremely important, this chapter includes a dedicated section on them and the proprietary routines most used are thoroughly explained. Finally, there is the description of the work that has been done, which is identified with three different phases, where the data acquired and the results obtained are presented. All the graphs and data reported were obtained through the Matlab® routine. As for the last chapter, it briefly presents all the work that has been done as well as an excursus on a new probe and on the way the procedure implemented in this dissertation could be applied in the case of a general field.
Resumo:
INTRODUCTION: Upper airway measurement can be important for the diagnosis of breathing disorders. Acoustic reflection (AR) is an accepted tool for studying the airway. Our objective was to investigate the differences between cone-beam computed tomography (CBCT) and AR in calculating airway volumes and areas. METHODS: Subjects with prescribed CBCT images as part of their records were also asked to have AR performed. A total of 59 subjects (mean age, 15 ± 3.8 years) had their upper airway (5 areas) measured from CBCT images, acoustic rhinometry, and acoustic pharyngometry. Volumes and minimal cross-sectional areas were extracted and compared with software. RESULTS: Intraclass correlation on 20 randomly selected subjects, remeasured 2 weeks apart, showed high reliability (r >0.77). Means of total nasal volume were significantly different between the 2 methods (P = 0.035), but anterior nasal volume and minimal cross-sectional area showed no differences (P = 0.532 and P = 0.066, respectively). Pharyngeal volume showed significant differences (P = 0.01) with high correlation (r = 0.755), whereas pharyngeal minimal cross-sectional area showed no differences (P = 0.109). The pharyngeal volume difference may not be considered clinically significant, since it is 758 mm3 for measurements showing means of 11,000 ± 4000 mm3. CONCLUSIONS: CBCT is an accurate method for measuring anterior nasal volume, nasal minimal cross-sectional area, pharyngeal volume, and pharyngeal minimal cross-sectional area.
Resumo:
The nonlinear properties of small amplitude electron-acoustic solitary waves (EAWs) in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili (KP) equation. At the critical ion density, the KP equation is not appropriate for describing the system. Hence, a new set of stretched coordinates
is considered to derive the modified KP equation. Moreover, the solitary solution, soliton energy and the associated electric field at the critical ion density were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments, such as Earth’s magnetotail region.
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.
Resumo:
Background For decades film has proved to be a powerful form of communication. Whether produced as entertainment, art or documentary, films have the capacity to inform and move us. Films are a highly attractive teaching instrument and an appropriate teaching method in health education. It is a valuable tool for studying situations most transcendental to human beings such as pain, disease and death. Objectives The objectives were to determine how this helps students engage with their role as health care professionals; to determine how they view the personal experience of illness, disease, disability or death; and to determine how this may impact upon their provision of patient care. Design, Setting and Participants The project was underpinned by the film selection determined by considerate review, intensive scrutiny, contemplation and discourse by the research team. 7 films were selected, ranging from animation; foreign, documentary, biopic and Hollywood drama. Each film was shown discretely, in an acoustic lecture theatre projected onto a large screen to pre-registration student nurses (adult, child and mental health) across each year of study from different cohorts (n = 49). Method A mixed qualitative method approach consisted of audio-recorded 5-minute reactions post film screening; coded questionnaires; and focus group. Findings were drawn from the impact of the films through thematic analysis of data sets and subjective text condensation categorised as: new insights looking through patient eyes; evoking emotion in student nurses; spiritual care; going to the moves to learn about the patient experience; self discovery through films; using films to link theory to practice. Results Deeper learning through film as a powerful medium was identified in meeting the objectives of the study. Integration of film into pre registration curriculum, pedagogy, teaching and learning is recommended. Conclusion The teaching potential of film stems from the visual process linked to human emotion and experience. Its impact has the power to not only help in learning the values that underpin nursing, but also for respecting the patient experience of disease, disability, death and its reality.
Resumo:
The work presented in this thesis is concerned with the dynamical behavior of a CBandola's acoustical box at low resonances -- Two models consisting of two and three coupled oscillators are proposed in order to analyse the response at the first two and three resonances, respectively -- These models describe the first resonances in a bandola as a combination of the lowest modes of vibration of enclosed air, top and back plates -- Physically, the coupling between these elements is caused by the fluid-structure interaction that gives rise to coupled modes of vibration for the assembled resonance box -- In this sense, the coupling in the models is expressed in terms of the ratio of effective areas and masses of the elements which is an useful parameter to control the coupling -- Numerical models are developed for the analysis of modal coupling which is performed using the Finite Element Method -- First, it is analysed the modal behavior of separate elements: enclosed air, top plate and back plate -- This step is important to identify participating modes in the coupling -- Then, a numerical model of the resonance box is used to compute the coupled modes -- The computation of normal modes of vibration was executed in the frequency range of 0-800Hz -- Although the introduced models of coupled oscillators only predict maximum the first three resonances, they also allow to study qualitatively the coupling between the rest of the computed modes in the range -- Considering that dynamic response of a structure can be described in terms of the modal parameters, this work represents, in a good approach, the basic behavior of a CBandola, although experimental measurements are suggested as further work to verify the obtained results and get more information about some characteristics of the coupled modes, for instance, the phase of vibration of the air mode and the radiation e ciency
Resumo:
Valveless pulsejets are extremely simple aircraft engines; essentially cleverly designed tubes with no moving parts. These engines utilize pressure waves, instead of machinery, for thrust generation, and have demonstrated thrust-to-weight ratios over 8 and thrust specific fuel consumption levels below 1 lbm/lbf-hr – performance levels that can rival many gas turbines. Despite their simplicity and competitive performance, they have not seen widespread application due to extremely high noise and vibration levels, which have persisted as an unresolved challenge primarily due to a lack of fundamental insight into the operation of these engines. This thesis develops two theories for pulsejet operation (both based on electro-acoustic analogies) that predict measurements better than any previous theory reported in the literature, and then uses them to devise and experimentally validate effective noise reduction strategies. The first theory analyzes valveless pulsejets as acoustic ducts with axially varying area and temperature. An electro-acoustic analogy is used to calculate longitudinal mode frequencies and shapes for prescribed area and temperature distributions inside an engine. Predicted operating frequencies match experimental values to within 6% with the use of appropriate end corrections. Mode shapes are predicted and used to develop strategies for suppressing higher modes that are responsible for much of the perceived noise. These strategies are verified experimentally and via comparison to existing models/data for valveless pulsejets in the literature. The second theory analyzes valveless pulsejets as acoustic systems/circuits in which each engine component is represented by an acoustic impedance. These are assembled to form an equivalent circuit for the engine that is solved to find the frequency response. The theory is used to predict the behavior of two interacting pulsejet engines. It is validated via comparison to experiment and data in the literature. The technique is then used to develop and experimentally verify a method for operating two engines in anti-phase without interfering with thrust production. Finally, Helmholtz resonators are used to suppress higher order modes that inhibit noise suppression via anti-phasing. Experiments show that the acoustic output of two resonator-equipped pulsejets operating in anti-phase is 9 dBA less than the acoustic output of a single pulsejet.
Resumo:
Communicating at a high data rate through the ocean is challenging. Such communications must be acoustic in order to travel long distances. The underwater acoustic channel has a long delay spread, which makes orthogonal frequency division multiplexing (OFDM) an attractive communication scheme. However, the underwater acoustic channel is highly dynamic, which has the potential to introduce significant inter-carrier interference (ICI). This thesis explores a number of means for mitigating ICI in such communication systems. One method that is explored is directly adapted linear turbo ICI cancellation. This scheme uses linear filters in an iterative structure to cancel the interference. Also explored is on-off keyed (OOK) OFDM, which is a signal designed to avoid ICI.
Resumo:
Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact-and thus low interference-experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used to investigate aeroelastic effects in high-speed turbomachines in detail. The results of these investigations are to be used to improve the aeroelastic design of modern turbomachines.