994 resultados para ATP synthesis
Resumo:
Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.
Resumo:
Hydrotalcites based upon gallium as a replacement for aluminium in hydrotalcite over a Mg/Al ratio of 2:1 to 4:1 were synthesised. The d(003) spacing varied from 7.83 A ° for the 2:1 hydrotalcite to 8.15 A ° for the 3:1 gallium containing hydrotalcite. A comparison is made with the Mg Al hydrotalcite in which the d(003) spacing for the Mg/Al hydrotalcite varied from 7.62 A ° for the 2:1Mg hydrotalcite to 7.98 A ° for the 4:1 hydrotalcite. The thermal stability of the gallium containing hydrotalcite was determined using thermogravimetric analysis. Four mass loss steps at 77, 263–280,485 and 828 degrees C with mass losses of 10.23, 21.55, 5.20 and 7.58% are attributed to dehydration, dehydroxylation and decarbonation. The thermal stability of the galliumcontaining hydrotalcite is slightly less than the aluminium hydrotalcite.
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
Strontium titanate nanocubes with an average edge length of 150mm have been successfully synthesized from a simple hydrothermal system. Characterization techniques such as X-ray powder diffraction analysis, scanning electron microscopy and energy-dispersive analysis of X-rays were used to investigate the products. The results showed that as-prepared powders are pure SrTiO3 with cubic shape, which consists with the growth habit of its intrinsic crystal structure. These uniform nanocubes with high crystallinity will exhibit superior physical properties in the practical applications. Furthermore, during the experimental process, it has been found that the dilute acid washing process is very important to obtain high pure SrTiO3.
Resumo:
Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]?) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]? complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]? complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
A 16 y.o. fully ambulant boy born to consanguineous Indian parents, presented for assessment of a fragility femoral neck fracture sustained against a background of autism and moderately severe intellectual disability. He had a past history of infantile eczema, and epilepsy treated with anticonvulsants from 2 to 10 years of age, with no further seizures following cessation of anticonvulsants. He had a thin body habitus (see Table 1) with long fingers and a high arched palate. He had no speech and negligible social interaction, but physical examination was otherwise unremarkable. Positive investigations revealed an undetectable serum creatinine and a urinary metabolic screen which showed an elevated GUA:Phe of 160 (< 36) and a decreased creatinine of 0.3 mmol/l (1.2–29.5) consistent with the diagnosis of guanidinoacetate methyltransferase(GAMT) deficiency. He was commenced on oral creatine 5 g three times daily. Despite improvement in physical activity, height and bone density, there was no discernable improvement in his intellectual functioning. Proton and phosphorous brain and leg magnetic resonance spectroscopy(MRS) was performed at baseline and showed an increased inorganic phosphorus peak and decreased phosphocreatine synthesis in brain and decreased creatine concentration in muscle. Following creatine treatment total brain creatine(1H-MRS) and phosphocreatine/ATP ratio (31P-MRS) content increased to 30% and 60% of control values, respectively. Brain GUA returned to normal levels.
Resumo:
ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence.
Resumo:
Layered doubly hydroxides (LDHs) also known as hydrotalcites or anionic clays are a group of clay minerals that have shown promise for the removal of toxic anions from water through both anion exchange and a process known as the reformation effect. This project has involved the preparation and characterisation of LDH materials as well as the investigation of their ability to remove selected anions from aqueous solutions by the reformation effect. The LDH materials were successfully prepared from magnesium, aluminium, zinc and chromium chloride salts using the co-precipitation method. Samples were characterised using powder X-ray diffraction (XRD) and thermogravimetry (TG) to confirm the presence of LDHs. Powder XRD revealed a characteristic LDH structure for all LDH samples. Thermal Analysis showed decomposition usual occurred through a three or four step process as expected for LDHs. Preliminary investigations of the removal of sulfate, nitrate and fluoride by an Mg/Al LDH were carried out, and the products were characterised using XRD and TG which showed that an LDH material similar to the original hydrotalcite was formed after reformation. A Zn/Al LDH was investigated as a potential sorbent material for the removal of iodine and iodide from water. It was found that the LDH was a suitable adsorbent which is able to remove almost all of the iodine present in the test solutions. Again, the products were characterised by XRD, TG and evolved gas mass spectrometry (EGMS) in an attempt to better understand the iodine removal process. Powder XRD showed successful reformation of the LDH structure and TG/EGMS showed that only a small amount of iodine species were lost during thermal decomposition. Finally, the mineral stichtite a Mg/Cr LDH was successfully synthesised and investigated using XRD, TG and EGMS. Unfortunately, due to lack of time it was not possible to identify any new uses for the mineral stichtite in the current project.