1000 resultados para ARTS1 gene
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.
Resumo:
Background Several lines of evidence suggests that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but a complete mapping the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors which may be involved in one subtype may not be in others. We investigated the possibility that this network could be mapped using microarray technologies and modern bioinformatics methods on a dataset from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls, Methodology/Principal Findings We have used two different analytical methodologies: a differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that seem to be statistically overrepresented in genes which are either differentially expressed (or differentially co-expressed) in cases and controls (e.g. V$KROX_Q6, p-value < 3.31E-6; V$CREBP1_Q2, p-value < 9.93E-6, V$YY1_02, p-value < 1.65E-5). Conclusions/significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. Analysing the published literature we have found that these transcription factors are involved in the early T-lymphocyte specification and commitment as well as in oligodendrocytes dedifferentiation and development. The most significant transcription factors motifs were for the Early Growth response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families.
Resumo:
Background Migraine is a debilitating neurological disorder affecting approximately 12% of the Caucasian population. There are two main sub-types of migraine, migraine without aura (MO) and migraine with aura (MA). Migraine exhibits varied phenotypic expression with sufferers experiencing a range of neurological and other symptoms. It is likely that multiple susceptibility genes play a role in this varied phenotypic expression, thus investigation of genotype-phenotype relationships may provide valuable insights into the role of susceptibility genes in this disorder. Methods This study investigated the links between migraine susceptibility genes, methylenetetrahydrofolate reductase (MTHFR) and angiotensin converting enzyme (ACE), and clinical manifestation through statistical analyses. Results The result showed that for the MTHFR genotypes, there was a statistically significant correlation with the TT homozygous genotype and visual disturbances, unilateral head pain and physical activity discomforts. It was also found that bilateral head pain was associated with the male gender. Conclusion From these study results, it is plausible to state that MTHFR genotypes affect the phenotypic expression of migraine disease manifestation.
Resumo:
Abstract: Monoamine Oxidase (MAO) enzymes catabolise, and thus modulate abundance of, neurotransmitters in the brain. Variation in MAO enzyme activity has been linked to alcohol abuse behaviour, although the molecular mechanisms underlying this association are not understood. The present study evaluated relative gene-transcript abundance of MAO-A and MAO-B in the SH-SY5Y human neuroblastoma cell-line in response to ethanol exposure and following ethanol withdrawal. We found that each isoform of MAO was significantly transcriptionally up-regulated 55-80% in response to 100mM ethanol exposure. This trend was maintained following prolonged exposures (24 h-72 h) and with short exposures (24 h) followed by a period of ethanol withdrawal, suggesting that the transcriptional regulation is the result of a cellular change occurring within the first 24 hours of ethanol exposure. These results suggest a role for MAO transcriptional regulation in the complex neurobiochemical changes underlying alcohol addiction.
Resumo:
High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation ‘‘hotspot’’ at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.
Resumo:
The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism (SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with consideration to its genomic location. The strategy and the tools discussed are applicable to any study investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).
Resumo:
PURPOSE: We used gene microarray analysis to compare the global expression profile of genes involved in adaptation to training in skeletal muscle from chronically strength-trained (ST), endurance-trained (ET), and untrained control subjects (Con). METHODS: Resting skeletal muscle samples were obtained from the vastus lateralis of 20 subjects (Con n = 7, ET n = 7, ST n = 6; trained [TR] groups >8 yr specific training). Total RNA was extracted from tissue for two color microarray analysis and quantative (Q)-PCR. Trained subjects were characterized by performance measures of peak oxygen uptake V?O 2peak) on a cycle ergometer and maximal concentric and eccentric leg strength on an isokinetic dynamometer. RESULTS: Two hundred and sixty-three genes were differentially expressed in trained subjects (ET + ST) compared with Con (P < 0.05), whereas 21 genes were different between ST and ET (P < 0.05). These results were validated by reverse transcriptase polymerase chain reaction for six differentially regulated genes (EIFSJ, LDHB, LMO4, MDH1, SLC16A7, and UTRN. Manual cluster analyses revealed significant regulation of genes involved in muscle structure and development in TR subjects compared with Con (P < 0.05) and expression correlated with measures of performance (P < 0.05). ET had increased whereas ST had decreased expression of gene clusters related to mitochondrial/oxidative capacity (P ?‰Currency sign 0.05). These mitochondrial gene clusters correlated with V?O2peak (P < 0.05). V?O2peak also correlated with expression of gene clusters that regulate fat and carbohydrate oxidation (P < 0.05). CONCLUSION: We demonstrate that chronic training subtly coregulates numerous genes from important functional groups that may be part of the long-term adaptive process to adapt to repeated training stimuli.
Resumo:
Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database 1 and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p < 0.05, fold change >1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05). These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide
Resumo:
HER2 is an erbB/HER type I tyrosine kinase receptor that is frequently over-expressed in malignant epithelial tumours. Herceptin, a humanised mouse monoclonal antibody to HER2, is proven therapeutically in the management of metastatic breast cancer, significantly prolonging survival when combined with cytotoxic chemotherapeutic agents. Immunohistochemical studies suggest that non-small-cell lung cancer (NSCLC) tumours may over-express HER2. Our aim was to evaluate HER2 gene amplification and semi-quantitative immuno-expression in NSCLC. A total of 344 NSCLC cases were immunostained for HER2 expression in 2 centres using the HercepTest. Fluorescence in situ hybridisation (FISH) analysis for HER2 gene amplification was performed on most positive cases and a subset of negative cases. Fifteen cases (4.3%) demonstrated 2+ or 3+ membranous HER2 immuno-expression. There was no correlation between immuno-expression and tumour histology or grade. Tumours from higher-stage disease were more often HercepTest-positive (p < 0.001). All 4 HercepTest 3 + cases demonstrated gene amplification. One of the 5 2+ cases tested for gene amplification showed areas of borderline amplification and areas of polyploidy. None of the 19 HercepTest-negative cases demonstrated gene amplification or polyploidy (p < 0.001). Gene amplification was demonstrated in all HercepTest 3+ scoring NSCLC cases. Unlike breast cancer, gene amplification and HER2 protein over-expression assessed by the HercepTest appeared to be uncommon in NSCLC. Herceptin may therefore target only a small proportion of NSCLC tumours and be of limited clinical value in this disease, particularly in the adjuvant setting. © 2001 Wiley-Liss, Inc.
Resumo:
Cell line array (CMA) and tissue microarray (TMA) technologies are high-throughput methods for analysing both the abundance and distribution of gene expression in a panel of cell lines or multiple tissue specimens in an efficient and cost-effective manner. The process is based on Kononen's method of extracting a cylindrical core of paraffin-embedded donor tissue and inserting it into a recipient paraffin block. Donor tissue from surgically resected paraffin-embedded tissue blocks, frozen needle biopsies or cell line pellets can all be arrayed in the recipient block. The representative area of interest is identified and circled on a haematoxylin and eosin (H&E)-stained section of the donor block. Using a predesigned map showing a precise spacing pattern, a high density array of up to 1,000 cores of cell pellets and/or donor tissue can be embedded into the recipient block using a tissue arrayer from Beecher Instruments. Depending on the depth of the cell line/tissue removed from the donor block 100-300 consecutive sections can be cut from each CMA/TMA block. Sections can be stained for in situ detection of protein, DNA or RNA targets using immunohistochemistry (IHC), fluorescent in situ hybridisation (FISH) or mRNA in situ hybridisation (RNA-ISH), respectively. This chapter provides detailed methods for CMA/TMA design, construction and analysis with in-depth notes on all technical aspects including tips to deal with common pitfalls the user may encounter. © Springer Science+Business Media, LLC 2011.
Resumo:
Background: To directly assess tumor oxygenation in resectable non - small cell lung cancers (NSCLC) and to correlate tumor pO2 and the selected gene and protein expression to treatment outcomes. Methods: Twenty patients with resectable NSCLC were enrolled. Intraoperative measurements of normal lung and tumor pO2 were done with the Eppendorf polarographic electrode. All patients had plasma osteopontin measurements by ELISA. Carbonic anhydrase-IX (CA IX) staining of tumor sections was done in the majority of patients (n = 16), as was gene expression profiling (n = 12) using cDNA microarrays. Tumor pO2 was correlated with CA IX staining, osteopontin levels, and treatment outcomes. Results: The median tumor pO2 ranged from 0.7 to 46 mm Hg (median, 16.6) and was lower than normal lung pO2 in all but one patient. Because both variables were affected by the completeness of lung deflation during measurement, we used the ratio of tumor/normal lung (T/L) pO2 as a reflection of tumor oxygenation. The median T/L pO 2 was 0.13. T/L pO2 correlated significantly with plasma osteopontin levels (r = 0.53, P = 0.02) and CA IX expression (P = 0.006). Gene expression profiling showed that high CD44 expression was a predictor for relapse, which was confirmed by tissue staining of CD44 variant 6 protein. Other variables associated with the risk of relapse were T stage (P = 0.02), T/L pO2 (P = 0.04), and osteopontin levels (P = 0.001). Conclusions: Tumor hypoxia exists in resectable NSCLC and is associated with elevated expression of osteopontin and CA IX. Tumor hypoxia and elevated osteopontin levels and CD44 expression correlated with poor prognosis. A larger study is needed to confirm the prognostic significance of these factors. © 2006 American Association for Cancer Research.
Resumo:
OBJECTIVE: This study explored gene expression differences in predicting response to chemoradiotherapy in esophageal cancer. PURPOSE:: A major pathological response to neoadjuvant chemoradiation is observed in about 40% of esophageal cancer patients and is associated with favorable outcomes. However, patients with tumors of similar histology, differentiation, and stage can have vastly different responses to the same neoadjuvant therapy. This dichotomy may be due to differences in the molecular genetic environment of the tumor cells. BACKGROUND DATA: Diagnostic biopsies were obtained from a training cohort of esophageal cancer patients (13), and extracted RNA was hybridized to genome expression microarrays. The resulting gene expression data was verified by qRT-PCR. In a larger, independent validation cohort (27), we examined differential gene expression by qRT-PCR. The ability of differentially-regulated genes to predict response to therapy was assessed in a multivariate leave-one-out cross-validation model. RESULTS: Although 411 genes were differentially expressed between normal and tumor tissue, only 103 genes were altered between responder and non-responder tumor; and 67 genes differentially expressed >2-fold. These included genes previously reported in esophageal cancer and a number of novel genes. In the validation cohort, 8 of 12 selected genes were significantly different between the response groups. In the predictive model, 5 of 8 genes could predict response to therapy with 95% accuracy in a subset (74%) of patients. CONCLUSIONS: This study has identified a gene microarray pattern and a set of genes associated with response to neoadjuvant chemoradiation in esophageal cancer. The potential of these genes as biomarkers of response to treatment warrants further investigation. Copyright © 2009 by Lippincott Williams & Wilkins.
Resumo:
In the recent decision Association for Molecular Pathology v. Myriad Genetics1, the US Supreme Court held that naturally occurring sequences from human genomic DNA are not patentable subject matter. Only certain complementary DNAs (cDNA), modified sequences and methods to use sequences are potentially patentable. It is likely that this distinction will hold for all DNA sequences, whether animal, plant or microbial2. However, it is not clear whether this means that other naturally occurring informational molecules, such as polypeptides (proteins) or polysaccharides, will also be excluded from patents. The decision underscores a pressing need for precise analysis of patents that disclose and reference genetic sequences, especially in the claims. Similarly, data sets, standards compliance and analytical tools must be improved—in particular, data sets and analytical tools must be made openly accessible—in order to provide a basis for effective decision making and policy setting to support biological innovation. Here, we present a web-based platform that allows such data aggregation, analysis and visualization in an open, shareable facility. To demonstrate the potential for the extension of this platform to global patent jurisdictions, we discuss the results of a global survey of patent offices that shows that much progress is still needed in making these data freely available for aggregation in the first place.
Resumo:
In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.