938 resultados para AROMATIC DISULFIDE OLIGOMERS
Resumo:
Study on the biomarkers types to assess health status of marine ecosystems in environmental biomonitoring has an important value. Accordingly, accumulation of polycyclic aromatic hydrocarbons(PAHs) in sediment, water and tissues (liver and gill) of mudskipper(i.e. Boleophthalmus dussumieri) and some physiological responses like lysosomal membrane change performed on haemocytes, stability of red blood cell membrane and the Glutathione-S Transferase (GST) activity in the liver were measured in mudskipper. Samples were obtained from five sites along north western coast of the Persian Gulf (Khuzestan coast). Red blood cell membrane changes after different concentration of PAHs at different time was also studied to evaluate impact of PAHs compound on cell membrane. PAHs concentration was measured by HPLC method. The activity of GST enzyme was analysed by spectrophotometric method. Lysosomal membrane change was measured by NRR time method and stability of red blood cell membrane was evaluated by EOF test. Total PAH concentrations in the coastal sea water, the sediments, the liver and the gill tissues ranged between 0.80-18.34 μg/l, 113.50-3384.34 ng g-1 (dry weight), 3.99-46.64 ng g-1 dw and 3.11-17.76 ng g-1 dw, respectively. Highest PAHs pollution was found at Jafari while the lowest was detected at Bahrakan sampling sites. The lowest enzymatic activity was identified at Bahrakan (7.19 ± 1.541 nmol/mg protein/min), while the highest was recorded at Jafari (46.96 ± 7.877 nmol/mg protein/min). Comparative analysis of GST activity in the liver of mudskippers showed significant difference (p < 0.05) between the locations of Jafari and Bahrakan, and with other sites. Moreover, no significant difference was detected between the locations of Arvand, Zangi and Samayeli (p < 0.05). The mean RT was below 90 minutes in all sampling sites. Values of mean RT of the dye ranged from 34 (for the blood samples of mudskipper collected from Jafari site) to 78 minutes (for the blood samples of mudskipper collected from Bahrakan site). Spatial evaluation revealed the longest RT in fish from Bahrakan as compared with those from other sites. Preliminary results showed a significant difference (p < 0.05) among sampling sites except between Arvand and Zangi (p > 0.05). Osmotic fragility curves indicated that erythrocytes collected from mudskippers at Jafari were the most 009 fragile followed by Zangi> Arvand> Samayeli> and Bahrakan. The mean erythrocyte fragility was significantly higher at Jafari site (p < 0.05) when compared to other sites. Significant differences were found between the various sites (p < 0.05).The result indicated no significant differences between the control and treatments of mudskipper RBC exposed to field concentrations of PAHs (P>0.05). The results further indicated significant differences (P<0.05) between the control and treatments of mudskipper RBC exposed to acute. Potency Divisor concentrations. It is clear from the present result that chronic. Potency Divisor concentrations protect red cells against osmotic hemolysis. This study, however, showed that PAH concentrations in this region are not higher than the available standards. The findings showed that Lysosomal membrane destabilization, liver GST activities and fragility of red cell membrane are highly sensitive in the mudskipper, B. dussumieri. Thus, mudskipper perceived to be good sentinel organisms for PAH pollution monitoring. Sediment PAH concentrations were strongly correlated with biomarkers, indicating that PAH type pollutants were biologically available to fish. One of the possible risk assessment implications of this study is that biomarkers can be applied not only to characterize biological effects of pollution exposures, but also to determine the bioavailability of pollution in aquatic systems. The results also indicated that PAHs compound possess anti haemolytic property.
Resumo:
Biochemical ecotoxicology and biomarkers using are a new sciences that are used for biomonitoring in aquatic environment. Biomonitoring plays a vital role in strategies to identify, assess, and control contaminants. On the other hands in recent year's attention to polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals increased in aquatic environments because of their carcinogenic and mutagenic properties combined with their nearly ubiquitous distribution in depositional environments by oil pollution or industrial waste waters. The present research aimed to assess PAHs and Ni, V levels in surface sediments and bivalves (Anodonta cygnea)and the effects of PAHs and heavy metals (Ni,V) on the hemocyte of the Anodonta cygnea were investigated in 2 stations (Mahrozeh, Selke in Anzali Lagoon, North of Iran). Samples were collected during at 2 different periods of the year, Dry and rain seasons, (June & September) and to confirm our first observations, Cage station is added. The bivalves hemocytes were monitored for membrane injury by NRR methods (neutral red retention assay). Heavy metal (Ni, V) concentrations were determined by Atomic Absorption in Anodonta cygnea and the sediments in Anzali Lagoon. The vanadium concentration in bivalves and sediments was ND(not detect )-0.4231 μg/g and 1.4381-306.9603 μg/g dry weight respectively. Nickel concentration in bivalves and sediments was 0.0231-1.3351, 0.4024-19.3561 μg/g dry weight respectively. PAHs concentrations were determined by GC-Mass in Anodonta cygnea and the sediments. Average concentration of PAHs is 115-373.788 ng/g dry weight in bivalves and average concentration of PAHs is 34.85-1339.839 ng/g dry weight in sediments. Bioaccumulation sediments factor(BASF) is high about PAHs (>1) and BASF is low for Ni, V (<1) . Internal Damage mechanisms of bivalves hemocytes (cell mortality, dye leakage, decreased membrane stability, are observed (Lowe Methods). Statistical analysis was used to explore the relationship between altered cellular and above contaminants. There are power and negative correlations between PAHs and NRR method for hemocytes in Anodonta cygnea (P<0.0005), but good correlation is not observed between Ni, V and NRR method for hemocytes in every time. This research indicates that the NRR assay is a useful screening technique able to discriminate polluted sites and at first we announce that Anodonta cygnea hemocytes are efficient biomarker for PAHs pollutants in fresh water.
Resumo:
We present the characterisation of a hydrogel forming family of benzene 1,3,5-tricarboxamide (BTA) aromatic carboxylic acid derivatives. The simple, easy to synthesise compounds presented here exhibit consistent gel formation at low concentrations through the use of a pH trigger.
Resumo:
Aryl hydrocarbon (Ah) receptor (Ah-agonist) effects of environmental samples containing polychlorinated aromatic hydrocarbons were evaluated using a 7-ethoxyresorufin-O-deethylase (FROD) assay of a primary hepatocyte culture from grass carp (Ctenopharyngodon idellus). The results were compared with those obtained from the assay using the rat hepatoma cell line H4IIE and chemical analysis using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). A dose-response relationship was observed between the EROD activities, either from primary hepatocyte culture assay or from H4IIE assay, and concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that the assay based on the H4IIE cell line (EC50 = 0.83 mug/mL) is more sensitive to TCDD than the assay based on primary hepatocyte Culture (EC50 = 9.7 pg/mL). In tests of environmental samples, the results from the assay using primary hepatocyte culture were comparable to those from the assay using the H4IIE cell line and chemical analysis of concentrations of mixtures of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF). The lack of a change in the activities of glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) in cell culture upon exposure to TCDD indirectly indicates that the compound is persistent to biodegradation in the cell culture system. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Green-lipped mussels (Perna viridis) were collected from a site in Hong Kong which is relatively free from polycyclic aromatic hydrocarbon (PAH) contamination, and maintained in situ at this and three other sites with different degrees of PAH contamination. The transplanted mussels were retrieved after a 30-day field exposure. DNA adducts in the gill tissues were quantified, and tissue concentrations of benzo[a]pyrene as well as total PAHs (with potential carcinogenicity) determined for individual mussels. Results indicate that (1) tissue concentration of PAHs and adduct levels in mussels collected from a single site can be highly variable; and (2) adduct levels were related to tissue concentrations of benzo[a]pyrene as well as total PAHs of individual animals.
Resumo:
Sources and distribution of polycyclic aromatic hydrocarbons (PAH) in the Ya-Er Lake area (Hubei, China) sediment cores of 3 ponds in the shallow Ya-Er Lake were investigated for 16 PAH. Analytical procedure included extraction by ultrasonication, clean-up by gel-permeation and quantification by HPLC with fluorescence detection. The total PAH amount in sediment samples of the Ya-Er Lake ranged from 68 to 2242 mu g/kg. Concentrations decreased from pond 1 to pond 3 and from upper to lower sediment layers. In addition a soil sample from Ya-Er Lake area showed a total PAH amount of 58 mu g/kg. The PAH pattern in lower sediment layers were similar to that of the soil sample which indicates an atmospheric deposition into the sediments prior to 1970 only. The PAH profile of upper sediment samples, which differs completely from that of lower layers, may be explained by a gradually increasing input of mixed combustion and raw fuel sources since 1970. Therefore the origin of increased PAH contamination in Ya-Er Lake during the last 3 decades has been probably an industrial waste effluent in pond 1.
Resumo:
Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.