188 resultados para AMPK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium (Ca2+) is a known important second messenger. Calcium/Calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) is a crucial kinase in the calcium signaling cascade. Activated by Ca2+/CaM, CaMKK2 can phosphorylate other CaM kinases and AMP-activated protein kinase (AMPK) to regulate cell differentiation, energy balance, metabolism and inflammation. Outside of the brain, CaMKK2 can only be detected in hematopoietic stem cells and progenitors, and in the subsets of mature myeloid cells. CaMKK2 has been noted to facilitate tumor cell proliferation in prostate cancer, breast cancer, and hepatic cancer. However, whethter CaMKK2 impacts the tumor microenvironment especially in hematopoietic malignancies remains unknown. Due to the relevance of myeloid cells in tumor growth, we hypothesized that CaMKK2 has a critical role in the tumor microenvironment, and tested this hyopothesis in murine models of hematological and solid cancer malignancies.

We found that CaMKK2 ablation in the host suppressed the growth of E.G7 murine lymphoma, Vk*Myc myeloma and E0771 mammary cancer. The selective ablation of CaMKK2 in myeloid cells was sufficient to restrain tumor growth, of which could be reversed by CD8 cell depletion. In the lymphoma microenvironment, ablating CaMKK2 generated less myeloid-derived suppressor cells (MDSCs) in vitro and in vivo. Mechanistically, CaMKK2 deficient dendritic cells showed higher Major Histocompatibility Class II (MHC II) and costimulatory factor expression, higher chemokine and IL-12 secretion when stimulated by LPS, and have higher potent in stimulating T-cell activation. AMPK, an anti-inflammatory kinase, was found as the relevant downstream target of CaMKK2 in dendritic cells. Treatment with CaMKK2 selective inhibitor STO-609 efficiently suppressed E.G7 and E0771 tumor growth, and reshaped the tumor microenvironment by attracting more immunogenic myeloid cells and infiltrated T cells.

In conclusion, we demonstrate that CaMKK2 expressed in myeloid cells is an important checkpoint in tumor microenvironment. Ablating CaMKK2 suppresses lymphoma growth by promoting myeloid cells development thereby decreasing MDSCs while enhancing the anti-tumor immune response. CaMKK2 inhibition is an innovative strategy for cancer therapy through reprogramming the tumor microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proper balancing of the activities of metabolic pathways to meet the challenge of providing necessary products for biosynthetic and energy demands of the cell is a key requirement for maintaining cell viability and allowing for cell proliferation. Cell metabolism has been found to play a crucial role in numerous cell settings, including in the cells of the immune system, where a successful immune response requires rapid proliferation and successful clearance of dangerous pathogens followed by resolution of the immune response. Additionally, it is now well known that cell metabolism is markedly altered from normal cells in the setting of cancer, where tumor cells rapidly and persistently proliferate. In both settings, alterations to the metabolic profile of the cells play important roles in promoting cell proliferation and survival.

It has long been known that many types of tumor cells and actively proliferating immune cells adopt a metabolic phenotype of aerobic glycolysis, whereby the cell, even under normoxic conditions, imports large amounts of glucose and fluxes it through the glycolytic pathway and produces lactate. However, the metabolic programs utilized by various immune cell subsets have only recently begun to be explored in detail, and the metabolic features and pathways influencing cell metabolism in tumor cells in vivo have not been studied in detail. The work presented here examines the role of metabolism in regulating the function of an important subset of the immune system, the regulatory T cell (Treg) and the role and regulation of metabolism in the context of malignant T cell acute lymphoblastic leukemia (T-ALL). We show that Treg cells, in order to properly function to suppress auto-inflammatory disease, adopt a metabolic program that is characterized by oxidative metabolism and active suppression of anabolic signaling and metabolic pathways. We found that the transcription factor FoxP3, which is highly expressed in Treg cells, drives this phenotype. Perturbing the metabolic phenotype of Treg cells by enforcing increased glycolysis or driving proliferation and anabolic signaling through inflammatory signaling pathways results in a reduction in suppressive function of Tregs.

In our studies focused on the metabolism of T-ALL, we observed that while T-ALL cells use and require aerobic glycolysis, the glycolytic metabolism of T-ALL is restrained compared to that of an antigen activated T cell. The metabolism of T-ALL is instead balanced, with mitochondrial metabolism also being increased. We observed that the pro-anabolic growth mTORC1 signaling pathway was limited in primary T-ALL cells as a result of AMPK pathway activity. AMPK pathway signaling was elevated as a result of oncogene induced metabolic stress. AMPK played a key role in the regulation of T-ALL cell metabolism, as genetic deletion of AMPK in an in vivo murine model of T-ALL resulted in increased glycolysis and anabolic metabolism, yet paradoxically increased cell death and increased mouse survival time. AMPK acts to promote mitochondrial oxidative metabolism in T-ALL through the regulation of Complex I activity, and loss of AMPK reduced mitochondrial oxidative metabolism and resulted in increased metabolic stress. Confirming a role for mitochondrial metabolism in T-ALL, we observed that the direct pharmacological inhibition of Complex I also resulted in a rapid loss of T-ALL cell viability in vitro and in vivo. Taken together, this work establishes an important role for AMPK to both balance the metabolic pathways utilized by T-ALL to allow for cell proliferation and to also promote tumor cell viability by controlling metabolic stress.

Overall, this work demonstrates the importance of the proper coupling of metabolic pathway activity with the function needs of particular types of immune cells. We show that Treg cells, which mainly act to keep immune responses well regulated, adopt a metabolic program where glycolytic metabolism is actively repressed, while oxidative metabolism is promoted. In the setting of malignant T-ALL cells, metabolic activity is surprisingly balanced, with both glycolysis and mitochondrial oxidative metabolism being utilized. In both cases, altering the metabolic balance towards glycolytic metabolism results in negative outcomes for the cell, with decreased Treg functionality and increased metabolic stress in T-ALL. In both cases, this work has generated a new understanding of how metabolism couples to immune cell function, and may allow for selective targeting of immune cell subsets by the specific targeting of metabolic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The function of the vascular endothelium is to maintain vascular homeostasis, by providing an anti-thrombotic, anti-inflammatory and vasodilatory interface between circulating blood and the vessel wall, meanwhile facilitating the selective passage of blood components such as signaling molecules and immune cells. Dysfunction of the vascular endothelium is implicated in a number of pathological states including atherosclerosis and hypertension, and is thought to precede atherogenesis by a number of years. Vascular endothelial growth factor A (VEGF) is a crucial mitogenic signaling molecule, not only essential for embryonic development, but also in the adult for regulating both physiological and pathological angiogenesis. Previous studies by our laboratory have demonstrated that VEGF-A activates AMP-activated protein kinase (AMPK), the downstream component of a signaling cascade important in the regulation of whole body and cellular energy status. Furthermore, studies in our laboratory have indicated that AMPK is essential for VEGF-A-stimulated vascular endothelial cell proliferation. AMPK activation typically stimulates anabolic processes and inhibits catabolic processes including cell proliferation, with the ultimate aim of redressing energy imbalance, and as such is an attractive therapeutic target for the treatment of obesity, metabolic syndromes, and type 2 diabetes. Metabolic diseases are associated with adverse cardiovascular outcomes and AMPK activation is reported to have beneficial effects on the vascular endothelium. The mechanism by which VEGF-A stimulates AMPK, and the functional consequences of VEGF-A-stimulated AMPK activation remain uncertain. The present study therefore aimed to identify the specific mechanism(s) by which VEGF-A regulates the activity of AMPK in endothelial cells, and how this might differ from the activation of AMPK by other agents. Furthermore, the role of AMPK in the pro-proliferative actions of VEGF-A was further examined. Human aortic and umbilical vein endothelial cells were therefore used as a model system to characterise the specific effect(s) of VEGF-A stimulation on AMPK activation. The present study reports that AMPK α1 containing AMPK complexes account for the vast majority of both basal and VEGF-A-stimulated AMPK activity. Furthermore, AMPK α1 is localized to the endoplasmic reticulum when sub-confluent, but translocated to the Golgi apparatus when cells are cultured to confluence. AMPK α2 appears to be associated with a structural cellular component, but neither α1 nor α2 complexes appear to translocate in response to VEGF-A stimulation. The present study confirms previous reports that when measured using the MTS cell proliferation assay, AMPK is required for VEGF-A-stimulated endothelial cell proliferation. However, parallel experiments measuring cell proliferation using the Real-Time Cell Analyzer xCELLigence system, do not agree with these previous reports, suggesting that AMPK may in fact be required for an aspect of mitochondrial metabolism which is enhanced by VEGF-A. Studies into the mitochondrial activity of endothelial cells have proved inconclusive at this time, but further studies into this are warranted. During previous studies in our laboratory, it was suggested that VEGF-A-stimulated AMPK activation may be mediated via the diacylglycerol (DAG)-sensitive transient receptor potential cation channel (TRPCs -3, -6 or -7) family of ion channels. The present study can neither confirm, nor exclude the expression of TRPCs in vascular endothelial cells, nor rule out their involvement in VEGF-A-stimulated AMPK activation; more specific investigative tools are required in order to characterise their involvement. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP)-stimulated Ca2+ release from acidic intracellular organelles is not required for AMPK activation by VEGF-A. Despite what is known about the mechanisms by which AMPK is activated, far less is known concerning the downregulation of AMPK activity, as observed in human and animal models of metabolic disease. Phosphorylation of AMPK α1 Ser485 (α2 Ser491) has recently been characterised as a mechanism by which the activity of AMPK is negatively regulated. We report here for the first time that VEGF-A stimulates AMPK α1 Ser485 phosphorylation independently of the previously reported AMPK α1 Ser485 kinases Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2). Furthermore, inhibition of protein kinase C (PKC), the activity of which is reported to be elevated in metabolic disease, attenuates VEGF-A- and phorbol 12-myristate 13-acetate (PMA)-stimulated AMPK α1 Ser485 phosphorylation, and increases basal AMPK activity. In contrast to this, PKC activation reduces AMPK activity in human vascular endothelial cells. Attempts to identify the PKC isoform responsible for inhibiting AMPK activity suggest that it is one (or more) of the Ca2+-regulated DAG-sensitive isoforms of PKC, however cross regulation of PKC isoform expression has limited the present study. Furthermore, AMPK α1 Ser485 phosphorylation was inversely correlated with human muscle insulin sensitivity. As such, enhanced AMPK α1 Ser485 phosphorylation, potentially mediated by increased PKC activation may help explain some of the reduced AMPK activity observed in metabolic disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 mu g/L), isoproturon (0.1 and 1 mu g/L), or both in a mixture (0.2 and 0.1 mu g/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase alpha (AMPK alpha), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was upregulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is a key regulator of cell energy homeostasis. More recently, it has become apparent that AMPK regulates cell proliferation, migration and inflammation. Previous evidence has suggested that AMPK may influence proliferation and invasion by regulating the pro-proliferative mitogen-activated protein kinases (MAPKs). However, the mechanisms underlying this crosstalk between AMPK and MAPK signalling are not fully understood. As AMPK activation has been reported to have anti-proliferative effects, there has been increasing interest in AMPK activation as a therapeutic target for tumourigenesis. The aim of this study was to investigate whether AMPK activation influenced prostate cancer (PC) cell line proliferation, migration and signalling. Therefore, different PC cell lines were incubated with two structurally-unrelated molecules that activate AMPK by different mechanisms, AICAR and A769662. Both chemicals activated AMPK in a concentration- and time-dependent manner in PC3, DU145 and LNCaP cell lines. AMPK activity as assessed by AMPK activating phosphorylation as well as phosphorylation of the AMPK substrate ACC increased along with tumour severity in PC biopsies. Furthermore, both activators of AMPK decreased cell proliferation and migration in the androgen-independent PC cell lines PC3 and DU145. Inhibition of proliferation by A769662 was attenuated in AMPK α1-/- AMPK α2-/- knockout (KO) mouse embryonic fibroblasts (MEFs) compared to wild type (WT) MEFs, and the inhibitory effect on migration of AICAR lost significance in PC3 cells infected with adenoviruses expressing a dominant negative AMPK α mutant, indicating these effects are partially mediated by AMPK. Furthermore, long-term activation of AMPK was associated with inhibition of both the phosphatidylinositol 3’-kinase/protein kinase B (PI3K/Akt) signalling pathway in addition to the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathway. Indeed, the actions of AMPK activators on PC cell line viability were mimicked by selective inhibitors of Akt and ERK1/2 pathways. In contrast to the effects of prolonged incubation with AMPK activators, short-term incubation with AMPK activators had no effect on epidermal growth factor (EGF)-stimulated ERK1/2 phosphorylation in PC cell lines. In addition, AMPK activation did not influence phosphorylation of the other MAPK family members p38 and JNK. Interestingly, both AICAR and A769662 decreased EGF-stimulated ERK5 phosphorylation in PC3, DU145 and LNCaP cells as assessed with an anti-phospho-ERK5 antibody. Further characterisation of this effect indicated that prior stimulation with the AMPK activators had no effect on ERK5 phosphorylation stimulated by transient transfection with a constitutively active ERK5 kinase (MEK5DD), which represents the only known canonical kinase for ERK5. Intriguingly, the pattern of EGF-stimulated ERK5 phosphorylation was distinct from that mediated by MEK5DD activation of ERK5. This finding indicates that AMPK activation inhibits EGF-stimulated ERK5 phosphorylation at a point at or above the level of MEK5, although why EGF and constitutively active MEK5 stimulate markedly different immunoreactive species recognised by the anti-phospho-ERK5 antibody requires further study. A769662 had a tendency to reduce EGF-stimulated ERK5 phosphorylation in WT MEFs, yet was without effect in MEFs lacking AMPK. These data indicate that AMPK may underlie the effect of A769662 to reduce EGF-stimulated ERK5 phosphorylation. Prolonged stimulation of PC cell lines with AICAR or A769662 inhibited EGF-stimulated Akt Ser473 phosphorylation, whereas only incubation with A769662 rapidly inhibited Akt phosphorylation. This difference in the actions of the different AMPK activators may suggest an AMPK-independent effect of A769662. Furthermore, AICAR increased phosphorylation of Akt in WT MEFs, an effect that was absent in MEFs lacking AMPK, indicating that this effect of AICAR may be AMPK-dependent. Taken together, the data presented in this study suggest that AMPK activators markedly inhibit proliferation and migration of PC cell lines, reduce EGF-stimulated ERK1/2 and Akt phosphorylation after prolonged incubation and rapidly inhibit ERK5 phosphorylation. Both AMPK activators exhibit a number of effects that are likely to be independent of AMPK in PC cell lines, although inhibition of ERK1/2, ERK5 and Akt may underlie the effects of AMPK activators on proliferation, viability and migration. Further studies are required to understand the crosstalk between those signalling pathways and their underlying significance in PC progression.