972 resultados para ALKALINE ISOMERIZATION
Resumo:
Department of Biotechnology, Cochin University of Science and Technology
Resumo:
The present study is mainly concéntrated on the visible fluorescence of Ho3+ ,nd 3+ and Er 3+rare earths in alkaline earth fluoride hosts(caF2,srF2,BaF2) using a nitrogen laser excitation. A nitrogen laser was fabricated and its parametric studies were first carried out.
Resumo:
Microorganisms distributed in the marine and brackish environments play an important role in the decomposition of organic matter and mineralisation in the system (Seshadri and lgnacimuthu, 2002). Estuary is one of the most productive ecosystems, at the same time one among the least explored ecosystems on earth, which has immense potential as a source of potent microorganisms that produce valuable compounds particularly, enzymes such as proteases. In this scenario, it is very appropriate to embark on finding novel alkaline protease producers from the estuarine system. The area where the present investigation was carried out is a part of the extensive estuarine system of South India viz. Cochin Estuary. There is meagre knowledge regarding the microbial composition, particularly the protease producers of Cochin Estuary. Hence, the present study has been undertaken with the objective of finding novel alkaline protease producing bacteria from Cochin Estuary
Resumo:
Considering the potential of marine environment present study was designed for the screening and isolation of a potential salt tolerant. alkaline and thennotolerant lipase producing bacteria from the costal belts of South India and consequent development of ideal bioprocess for industrial production, purification characterisation and evaluation of the potential of the lipase enzyme for various industrial applications 1. Screening and isolation of a potential lipase producing bacteria. 2. Optimization of various physicochemical factors in Submerged fennentation for the production of alkaline lipase 3. Purification ofthe lipase enzyme 4. Characterisation of the enzyme 5. Evaluation of the enzyme for various industrial applications
Resumo:
Vibrio sp. V26 isolated from mangrove sediment showed 98 % similarity to 16S rRNA gene of Vibrio cholerae, V. mimicus, V. albensis and uncultured clones of Vibrio. Phenotypically also it resembled both V. cholerae and V. mimicus.Serogrouping, virulence associated gene profiling, hydrophobicity, and adherence pattern clearly pointed towards the non—toxigenic nature of Vibrio sp. V26. Purification and characterization of the enzyme revealed that it was moderately thermoactive, nonhemagglutinating alkaline metalloprotease with a molecular mass of 32 kDa. The application of alkaline protease from Vibrio sp. V26 (APV26) in sub culturing cell lines (HEp-2, HeLa and RTG-2) and dissociation of animal tissue (chick embryo) for primary cell culture were investigated. The time required for dissociation of cells as well as the viable cell yield obtained by while administeringAPV26 and trypsin were compared. Investigations revealed that the alkaline protease of Vibrio sp. V26 has the potential to be used in animal cell culture for subculturing cell lines and dissociation of animal tissue for the development of primary cell cultures, which has not been reported earlier among metalloproteases of Vibrios.
Resumo:
Bacillus smithii BTMS 11, isolated from marine sediment, produced alkaline and thermostable lipase. The enzyme was purified to homogeneity by ammonium sulfate precipitation and ion exchange chromatography which resulted in 0.51 % final yield and a 4.33 fold of purification. The purified enzyme was found to have a specific activity of 360 IU/mg protein. SDS-PAGE analyses, under non-reducing and reducing conditions, yielded a single band of 45 kDa indicating the single polypeptide nature of the enzyme and zymogram analysis using methylumbelliferyl butyrate as substrate confirmed the lipolytic activity of the protein band. The enzyme was found to have 50 C and pH 8.0 as optimum conditions for maximal activity. However, the enzyme was active over wide range of temperatures (30–80 C) and pH (7.0–10.0). Effect of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on lipase activity was studied to determine the novel characteristics of the enzyme. More than 90 % of the enzyme activity was observed even after 3 h of incubation in the presence of commercial detergents Surf, Sunlight, Ariel, Henko, Tide and Ujala indicating the detergent compatibility of B. smithii lipase. The enzyme was also found to be efficient in stain removal from cotton cloths. Further it was observed that the enzyme could catalyse ester synthesis between fatty acids of varying carbon chain lengths and methanol with high preference for medium to long chain fatty acids showing 70 % of esterification. Results of the study indicated scope for application of this marine bacterial lipase in various industries
Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10
Resumo:
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme.Km, Vmax, and Kcat of the enzyme were 4.727 9 10-2 mg/ml, 394.68 U, and 4.2175 9 10-2 s-1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65 C), withmaximumactivity at pH 11 and 60 C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65 C. Hg2?, Cu2?, Fe3?, Zn2?, Cd?, and Al3? inhibited enzyme activity, while 1 mMCo2? enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.
Resumo:
This thesis consists of 4 main parts: (1) impact of growing maize on the decomposition of incorporated fresh alfalfa residues, (2) relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab, (3) decomposition of compost and plant residues in Pakistani soils along a gradient in salinity, and (4) interactions of compost and triple superphosphate on the growth of maize in a saline Pakistani soil. These 4 chapters are framed by a General Introduction and a Conclusions section. (1) In the first study, the effects of growing maize plants on the microbial decomposition of freshly chopped alfalfa residues was investigated in a 90-day pot experiment using a sandy arable soil. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 27% of the alfalfa residues were found as CO2. This suggests that a considerable part of alfalfa-C remained undecomposed in the soil. However, only 6% of the alfalfa residues could be recovered as plant remains in treatment with solely alfalfa residues. Based on d13C values, it was calculated that plant remains in treatment maize + alfalfa residues contained 14.7% alfalfa residues and 85.3% maize root remains. This means 60% more alfalfa-C was recovered in this treatment. (2) In the second study, the interactions between soil physical, soil chemical and soil biological properties were analysed in 30 Pakistani soils from alkaline and saline arable sites differing strongly in salinisation and in soil pH. The soil biological properties were differentiated into indices for microbial activity, microbial biomass, and community structure with the aim of assessing their potential as soil fertility indices. (3) In the third study, 3 organic amendments (compost, maize straw and pea straw) were added to 5 Pakistani soils from a gradient in salinity. Although salinity has depressive effects on microbial biomass C, biomass N, biomass P, and ergosterol, the clear gradient according to the soil salt concentration was not reflected by the soil microbial properties. The addition of the 3 organic amendments always increased the contents of the microbial indices analysed. The amendment-induced increase was especially strong for microbial biomass P and reflected the total P content of the added substrates. (4) The fourth study was greenhouse pot experiment with different combinations of compost and triple superphosphate amendments to investigate the interactions between plant growth, microbial biomass formation and compost decomposition in a strongly saline Pakistani arable soil in comparison to a non-saline German arable soil. The Pakistani soil had a 2 times lower content of ergosterol, a 4 times lower contents of microbial biomass C, biomass N and biomass P, but nearly a 20 times lower content of NaHCO3 extractable P. The addition of 1% compost always had positive effects on the microbial properties and also on the content of NaHCO3 extractable P. The addition of superphosphate induced a strong and similar absolute increase in microbial biomass P in both soils.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 mu m diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1) (or k(mt) > 1.0 cm s(-1)) are observed at 50 mu m diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 mu m diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 mu m diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)63–/4– redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 µm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of kmt > 0.01 m s–1(or kmt > 1.0 cm s–1) are observed at 50 µm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 µm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 µm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
Two Multifunctional photoactive complexes [Re(Cl)(CO)(3)-(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+) = N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy = 2,2'-bipyridine) were synthesized. characterized. and their redox and photonic properties were investigated by cyclic voltammetry: ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions: and time-resolved resonance Raman spectroscopy. The first reduction step of either complex Occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans -> cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3) -> MeDpe(+) (MLCT)-M-3 (MLCT = metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximate to 42 (73%) and approximate to 430ps (27%). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3) -> MeDpe(+) and Re(CO)(3) -> bpy (MLCT)-M-3 states, from which a MeDpe(+) localized intraligand 3 pi pi* excited state ((IL)-I-3) is populated with lifetimes of approximate to 0.6 and approximate to 10 ps, respectively. The 3IL state undergoes a approximate to 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle Structural variations. The complex [Re(MeDpe+)(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.
Resumo:
Fluorophos and colourimetric procedures for alkaline phosphatase (ALP) testing were compared using milk with raw milk additions, purified bovine ALP additions and heat treatments. Repeatability was between 0.9% and 10.1% for Fluorophos, 3.5% and 46.1% for the Aschaffenburg and Mullen (A&M) procedure and 4.4% and 8.8% for the Scharer rapid test. Linearity (R-2) using raw milk addition was 0.96 between Fluorophos and the Scharer procedure. Between the Fluorophos and the A&M procedures, R-2 values were 0.98, 0.99 and 0.98 for raw milk additions, bovine ALP additions and heat treatments respectively. Fluorophos showed greater sensitivity and was both faster and simpler to perform.
Resumo:
The rigid [6]ferrocenophane, L-1, was synthesised by condensation of 1,1'-ferrocene dicarbaldehyde with trans-1,2-diaminocyclohexane in high dilution at r.t. followed by reduction. When other experimental conditions were employed, the [6,6,6]ferrocenephane (L-2) was also obtained. Both compounds were characterised by single crystal X-ray crystallography. The protonation of L-1 and its metal complexation were evaluated by the effect on the electron-transfer process of the ferrocene (fc) unit of L-1 using cyclic voltammetry (CV) and square wave voltammetry (SWV) in anhydrous CH3CN solution and in 0.1 M (Bu4NPF6)-Bu-n as the supporting electrolyte. The electrochemical process of L-1 between 300 and 900 mV is complicated by amine oxidation. On the other hand, an anodic shift from the fc/fc(+) wave of L-1 of 249, 225, 81 and 61 mV was observed by formation of Zn2+, Ni2+, Pd2+ and Cu2+ complexes, respectively. Whereas Mg2+ and Ca2+ only have with L-1 weak interactions and they promote the acid-base equilibrium of L-1. This reveals that L-1 is an interesting molecular redox sensor for detection of Zn2+ and Ni2+, although the kinetics of the Zn2+ complex formation is much faster than that of the Ni2+ one. The X-ray crystal structure of [(PdLCl2)-Cl-1] was determined and showed a square-planar environment with Pd(II) and Fe(II) centres separated by 3.781(1) angstrom. The experimental anodic shifts were elucidated by DFT calculations on the [(MLCl2)-Cl-1] series and they are related to the nature of the HOMO of these complexes and a four-electron, two-orbital interaction.
Resumo:
Changes in land management practices may have significant implications for soil microbial communities important in organic P turnover. Soil bacteria can increase plant P availability by excreting phosphatase enzymes which catalyze the hydrolysis of ester-phosphate bonds. Examining the diversity and abundance of alkaline phosphatase gene harboring bacteria may provide valuable insight into alkaline phosphatase production in soils. This study examined the effect of 20 years of no input organic (ORG), organic with composted manure (ORG + M), conventional (CONV) and restored prairie (PRA) management on soil P bioavailability, alkaline phosphatase activity (ALP), and abundance and diversity of ALP gene (phoD) harboring bacteria in soils from the northern Great Plains of Canada. Management system influenced bioavailable P (P < 0.001), but not total P, with the lowest concentrations in the ORG systems and the highest in PRA. Higher rates of ALP were observed in the ORG and ORG + M treatments with a significant negative correlation between bioavailable P and ALP in 2011 (r2 = 0.71; P = 0.03) and 2012 (r2 = 0.51; P = 0.02), suggesting that ALP activity increased under P limiting conditions. The phoD gene abundance was also highest in ORG and ORG + M resulting in a significant positive relationship between bacterial phoD abundance and ALP activity (r2 = 0.71; P = 0.009). Analysis of phoD bacterial community fingerprints showed a higher number of species in CONV compared to ORG and ORG + M, contrary to what was expected considering greater ALP activity under ORG management. In 2012, banding profiles of ORG + M showed fewer phoD bacterial species following the second manure application, although ALP activity is higher than in 2011. This indicates that a few species may be producing more ALP and that quantitative gene analysis was a better indicator of activity than the number of species present.
Resumo:
sigma(S) is responsible for the transcriptional regulation of genes related to protection against stresses and bacterial survival and it accumulates in the cell under conditions of stress, such as nutrient limitation. An increase in the levels of sigma(S) causes a reduction in the expression of genes that are transcribed by RNA polymerase associated with the principal sigma factor, sigma(70). phoA, that encodes alkaline phosphatase (AP) is expressed under phosphate shortage conditions, and is also repressed by sigma(S). Here we show that in a Pi-limited chemostat, accumulation of rpoS mutations is proportional to the intrinsic level of sigma(S) in the cells. Acquisition of mutations in rpoS relieves repression of the PHO genes. We also devised a non-destructive method based on the rpoS effect on AP that differentiates between rpo(S+) and rpoS mutants, as well as between high and low-sigma(S) producers. Using this method, we provide evidence that sigma(S) contributes to the repression of AP under conditions of Pi excess and that AP variation among different strains is at least partly due to intrinsic variation in sigma(S) levels. Consequently, a simple and non-destructive AP assay can be employed to differentiate between strains expressing different levels of sigma(S) on agar plates.