992 resultados para ACID DERIVATIVES
Resumo:
O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.
Resumo:
E-Lychnophoric acid 1, its derivative ester 2 and alcohol 3 killed 100% of trypomastigote blood forms of Trypanosoma cruzi at the concentrations of 13.86, 5.68, and 6.48 µg/mL, respectively. Conformational distribution calculations (AM1) of 1, 2 and 3 gave minimum energies for the conformers a, b, c, and d, which differ from each other only in the cyclononene ring geometry. Calculations (DFT/BLYP/6-31G*) of geometry optimization and chemical properties were performed for conformers of 1, 2, and 3. The theoretical results were numerically compared to the trypanocidal activity. Calculated values of atomic charge, orbital population, and vibrational frequencies showed that the C-4-C-5 pi-endocyclic bond does not affect the trypanocidal activity of the studied compounds. Nevertheless, the structure of the group at C-4 strongly influences the activity. However, the theoretical results indicated that the intra-ring (C-1 and C-9) and pi-exocycle (C-8 and C-14) carbons of caryophyllene-type structures promote the trypanocidal activity of these compounds.
Resumo:
The photodimerisation of single crystals of substituted cinnamic acid has been monitored continuously by infrared microscopy using a synchrotron source. The beta-form of 2,4-dichloro-trans-cinnamic acid dimerises under ultraviolet irradiation to form the corresponding beta-truxinic acid derivative in a reaction which follows strictly first order kinetics. By contrast the corresponding reactions in single crystals of beta-2-chloro-trans-cinnamic acid and beta-4-chloro-trans-cinnamic acid deviate somewhat from first order kinetics as a result of solid-state effects. In all three cases the reactions proceed smoothly from monomer to dimer with no hint of any reaction intermediate.
Resumo:
The kinetics of the photodimerisation reactions of the 2- and 4-β-halogeno-derivatives of trans-cinnamic acid (where the halogen is fluorine, chlorine or bromine) have been investigated by infrared microspectroscopy. It is found that none of the reactions proceed to 100% yield. This is in line with a reaction mechanism developed by Wernick and his co-workers that postulates the formation of isolated monomers within the solid, which cannot react. β-4-Bromo and β-4-chloro-trans-cinnamic acids show approximately first order kinetics, although in both cases the reaction accelerates somewhat as it proceeds. First order kinetics is explained in terms of a reaction between one excited- and one ground-state monomer molecule, while the acceleration of the reaction implies that it is promoted as defects are formed within the crystal. By contrast β-2-chloro-trans-cinnamic acid shows a strongly accelerating reaction which models closely to the contracting cube equation. β-2-Fluoro- and β-4-fluoro-trans-cinnamic acids show a close match to first order kinetics. The 4-fluoro-derivative, however, shows a reaction that proceeds via a structural intermediate. The difference in behaviour between the 2-fluoro- and 4-fluoro-derivative may be due to different C–HF hydrogen bonds observed within these single-crystalline starting materials.
Resumo:
Single crystals of trans-cinnamic acid and of a range of derivatives of this compound containing halogen substituents on the aromatic ring have been reacted with 165 Torr pressure of bromine vapour in a sealed desiccator at 20 degrees C for 1 week. Infrared and Raman microspectroscopic examination of the crystals shows that bromination of the aliphatic double bond, but not of the aromatic ring, has occurred. It is demonstrated also that the reaction is truly gas-solid in nature. A time-dependent study of these reactions shows that they do not follow a smooth diffusion-controlled pathway. Rather the reactions appear to be inhomogeneous and to occur at defects within the crystal. The reaction products are seen to flake from the surface of the crystal. It is shown, therefore, that these are not single crystal to single crystal transitions, as have been observed previously for the photodimerisation of trans-cinnamic acid and several of its derivatives. It is shown that there are no by-products of the reaction and that finely ground samples react to form the same products as single crystals.
Resumo:
The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.
Resumo:
Studies have suggested that diets rich in polyphenols Such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine. The reaction of monomeric and dimeric epicatechin with nitrous acid led to the formation of mono- and di-nitroso flavanols, whereas the reaction with hesperetin resulted primarily in the formation of nitrated products. Although, epicatechin was transferred across the jejunum of the small intestine yielding metabolites, its nitroso form was not absorbed. Dimer B2 but not epicatechin monomer inhibited the proliferation of, and triggered apoptosis in, Caco-2 cells. The latter was accompanied by caspase-3 activation and reductions in Akt phosphorylation, suggesting activation of apoptosis via inhibition of prosurvival signaling. Furthermore, the dinitroso derivative of dimer B2, and to a lesser extent the dinitroso-epicatechin, also induced significant toxic effects in Caco-2 cells. The inhibitory effects on cellular proliferation were paralleled by early inhibition of ERK 1/2 phosphorylation and later reductions in cyclin D I levels, indicating modulation of cell cycle regulation in Caco-2 cells. These effects highlight multiple routes in which dietary derived flavanols may exert beneficial effects in the gastrointestinal tract. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The reaction of dimethylthallium(III) hydroxide with picolinic acid (Hpic), 3-hydroxypicolinic acid (H(2)3hpic) and 6-hydroxypicolinic acid (H(2)6hpic) in an aqueous/methanol mixture afforded the complexes [TlMe(2)(pic)] (1), [TlMe(2)(H3hpic)] (2) and [TlMe(2)(H6hpic)] (3), respectively. Complex 3`, [NaTlMe(2)(6hpic)(2)](n), was obtained as a minor product from a methanolic solution of 3. Compounds 1-3 were characterized by IR and Raman spectroscopy and, in the cases of 1, 2 and Y, by single-crystal X-ray diffraction. Complex 3` is the first example of an H6hpic(-) heterobimetallic compound to be isolated. The (1)H and (13)C NMR spectra of 1 and 2 are also discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of a series of omega-hydroxyfatty acid (omega-OHFA) monomers and their methyl ester derivatives (Me-omega-OHFA) from mono-unsaturated fatty acids and alcohols via ozonolysis-reduction/crossmetathesis reactions is described. Melt polycondensation of the monomers yielded thermoplastic poly(omega-hydroxyfatty acid)s [-(CH2)(n)-COO-](x) with medium (n = 8 and 12) and long (n = 17) repeating monomer units. The omega-OHFAs and Me-omega-OHFAs were all obtained in good yield (>= 80%) and purity (>= 97%) as established by H-1 NMR, Fourier Transform infra-red spectroscopy (FT-IR), mass spectroscopy (ESI-MS) and high performance liquid chromatography (HPLC) analyses. The average molecular size (M-n) and distribution (PDI) of the poly(omega-hydroxyfatty acid)s (P(omega-OHFA)s) and poly(omega-hydroxyfatty ester) s (P(Me-omega-OHFA) s) as determined by GPC varied with organo-metallic Ti(IV) isopropoxide [Ti(OiPr)(4)] polycondensation catalyst amount, reaction time and temperature. An optimization of the polymerization process provided P(omega-OHFA) s and P(Me-omega-OHFA) s with M-n and PDI values desirable for high end applications. Co-polymerization of the long chain (n = 12) and medium chain (n = 8) Me-omega-OHFAs by melt polycondensation yielded poly(omega-hydroxy tridecanoate/omega-hydroxy nonanoate) random co-polyesters (M-n = 11000- 18500 g mol(-1)) with varying molar compositions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Credneramides A (1) and B (2), two vinyl chloride-containing metabolites, were isolated from a Papua New Guinea collection of cf. Trichodesmium sp. nov. and expand a recently described class of vinyl chloride-containing natural products. The precursor fatty acid, credneric acid (3), was isolated from both the aqueous and organic fractions of the parent fraction as well as from another geographically and phylogenetically distinct cyanobacterial collection (Panama). Credneramides A and B inhibited spontaneous calcium oscillations in murine cerebrocortical neurons at low micro-molar concentrations (1, IC50 4.0 mu M; 2, IC50 3.8 mu M).
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
Trifluoroacetic acid has been discovered to be a highly effective and efficient reagent for the tandem Claisen rearrangement and cyclisation reaction to yield 3-arylmethylene-3,4-dihydro-1H-quinolin-2-ones from compounds obtained from the SN2 reaction between anilines and acetyl derivatives of Baylis-Hillman adducts of acrylates in the presence of DABCO. In contrast similar compounds obtained from the acetyl derivatives of Baylis-Hillman adduct of acrylonitrile on treatment with trifluoroacetic acid directly furnish 3-arylmethyl-2-amino-quinoline via tandem Claisen rearrangement, cylisation and isomerisation.
Resumo:
Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table 2). Most of the β-amino acid-containing NTS(8-13) analogs (Table 1 and Fig.2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10-15 min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.5).