896 resultados para ACCIDENT PREVENTION
Resumo:
Background: The incidence of venous lesions following transvenous cardiac device implantation is high. Previous implantation of temporary leads ipsilateral to the permanent devices, and a depressed left ventricular ejection fraction have been associated with an increased risk of venous lesions, though the effects of preventive strategies remain controversial. This randomized trial examined the effects of warfarin in the prevention of these complications in high-risk patients. Method: Between February 2004 and September 2007, we studied 101 adults who underwent a first cardiac device implantation, and who had a left ventricular ejection fraction <= 0.40, or a temporary pacing system ipsilateral to the permanent implant, or both. After device implantation, the patients were randomly assigned to warfarin to a target international normalized ratio of 2.0-3.5, or to placebo. Clinical and laboratory evaluations were performed regularly up to 6 months postimplant. Venous lesions were detected at 6 months by digital subtraction venography. Results: Venous obstructions of various degrees were observed in 46 of the 92 patients (50.0%) who underwent venography. The frequency of venous obstructions was 60.4% in the placebo, versus 38.6% in the warfarin group (P = 0.018), corresponding to an absolute risk reduction of 22% (relative risk = 0.63; 95% confidence interval = 0.013-0.42). Conclusions: Warfarin prophylaxis lowered the frequency of venous lesions after transvenous devices implantation in high-risk patients. (PACE 2009; 32:S247-S251)
Resumo:
Lymphocyte and neutrophil death induced by exercise and the role of hydrolyzed whey protein enriched with glutamine dipeptide (Gln) supplementation was investigated. Nine triathletes performed two exhaustive exercise trials with a 1-week interval in a randomized, double blind, crossover protocol. Thirty minutes before treadmill exhaustive exercise at variable speeds in an inclination of 1% the subjects ingested 50 g of maltodextrin (placebo) or 50 g of maltodextrin plus 4 tablets of 700 mg of hydrolyzed whey protein enriched with 175 mg of glutamine dipeptide dissolved in 250 mL water. Cell viability, DNA fragmentation, mitochondrial transmembrane potential and production of reactive oxygen species (ROS) were determined in lymphocytes and neutrophils. Exhaustive exercise decreased viable lymphocytes but had no effect on neutrophils. A 2.2-fold increase in the proportion of lymphocytes and neutrophils with depolarized mitochondria was observed after exhaustive exercise. Supplementation of maltodextrin plus Gln (MGln) prevented the loss of lymphocyte membrane integrity and the mitochondrial membrane depolarization induced by exercise. Exercise caused an increase in ROS production by neutrophils, whereas supplementation of MGln had no additional effect. MGln supplementation partially prevented lymphocyte apoptosis induced by exhaustive exercise possibly by a protective effect on mitochondrial function.
Resumo:
Previous chapters have presented the latest findings in neuroscience research, and have pointed to potential treatment and prevention strategies. However, there are many ethical implications of the research itself, as well as the treatment and prevention strategies, that must be considered. The rapid pace of change in the field of neuroscience brings with it a host of new ethical issues, which need to be addressed. This chapter considers the important ethical and human rights issues that are raised by neuroscience research on psychoactive substance dependence.
Resumo:
In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H S synthesis inhibitors, DL-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson`s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K-ATP(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K-ATP(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H`S augments neutrophil adhesion and locomotion, by a mechanism dependent on K-ATP(+) channels.