299 resultados para ACCEPTORS
Resumo:
The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.
Resumo:
The dependence of the electron transfer (ET) rate on the Photosystem I (PSI) cofactor phylloquinone (A1) is studied by time-resolved absorbance and electron paramagnetic resonance (EPR) spectroscopy. Two active branches (A and B) of electron transfer converge to the FX cofactor from the A1A and A1B quinone. The work described in Chapter 5 investigates the single hydrogen bond from the amino acid residue PsaA-L722 backbone nitrogen to A1A for its effect on the electron transfer rate to FX. Room temperature transient EPR measurements show an increase in the rate for the A1A- to FX for the PsaA-L722T mutant and an increased hyperfine coupling to the 2-methyl group of A1A when compared to wild type. The Arrhenius plot of the A1A- to FX ET in the PsaA-L722T mutant suggests that the increased rate is probably the result of a slight change in the electronic coupling between A1A- and FX. The reasons for the non-Arrhenius behavior are discussed. The work discussed in Chapter 6 investigates the directionality of ET at low temperature by blocking ET to the iron-sulfur clusters FX, FA and FB in the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, by incorporating the high midpoint potential (49 mV vs SHE) 2,3-dichloro-1,4-naphthoquinone (Cl2NQ) into the A1A and A1B binding sites. Various EPR spectroscopic techniques were implemented to differentiate between the spectral features created from A and B- branch electron transfer. The implications of this result for the directionality of electron transfer in PS I are discussed. The work discussed in Chapter 7 was done to study the dependence of the heterogeneous ET at low temperature on A1 midpoint potential. The menB PSI mutant contains plastiquinone-9 in the A1 binding site. The solution midpoint potential of the quinone measures 100 mV more positive then wild-type phylloquinone. The irreversible ET to the terminal acceptors FA and FB at low temperature is not controlled by the forward step from A1 to FX as expected due to the thermodynamic differences of the A1 cofactor in the two active branches A and B. Alternatives for the ET heterogeneity are discussed.
Resumo:
Les toxines formeuses de pore (PFTs) sont des protéines exogènes responsables d’un grand nombre de maladies infectieuses qui perméabilisent les membranes cellulaires de leur hôte. La formation des pores ou l’introduction d’une enzyme dans le cytoplasme peut entrainer l’apparition de symptômes de maladies connues (l’anthrax, le botulisme) et, dans le pire des cas, la mort. Les mécanismes d’infection et de destruction des cellules infectées sont bien caractérisés. Toutefois, l’aspect dynamique des changements de conformation durant le processus de perméabilisation reste à découvrir pour la majorité des toxines formeuses de pore. Le but de cette thèse est d’étudier les mécanismes d’oligomérisation des PFTs, ainsi que la formation des pores à la membrane lipidique grâce à la spectroscopie de fluorescence. Nous avons choisi la toxine Cry1Aa, un bio pesticide produit par le bacille de Thuringe et qui a été rigoureusement caractérisé, en tant que modèle d’étude. La topologie de la Cry1Aa à l’état actif et inactif a pu être résolue grâce à l’utilisation d’une technique de spectroscopie de fluorescence, le FRET ou transfert d’énergie par résonance entre un fluorophore greffé au domaine formeur de pore (D1) et un accepteur non fluorescent (le DPA ou dipicrylamine) localisé dans la membrane et qui bouge selon le potentiel membranaire. Le courant électrique, ainsi que la fluorescence provenant de la bicouche lipidique membranaire horizontale ont été enregistrés simultanément. De cette manière, nous avons pu localiser toutes les boucles reliant les hélices de D1 avant et après la formation des pores. Dans la forme inactive de la toxine, toutes ces boucles se trouvent du côté interne de la bicouche lipidique, mais dans sa forme active l’épingle α3-α4 traverse du côté externe, alors que toutes les autres hélices demeurent du côté interne. Ces résultats suggèrent que α3-α4 forment le pore. Nous avons découvert que la toxine change significativement de conformation une fois qu’elle se trouve dans la bicouche lipidique, et que la Cry1Aa attaque la membrane lipidique de l’extérieur, mais en formant le pore de l’intérieur. Dans le but de caractériser la distribution de toxines à chaque extrémité de la bicouche, nous avons utilisé une technique de double FRET avec deux accepteurs ayant des vitesses de translocation différentes (le DPA et l’oxonol) dans la membrane lipidique. De cette manière, nous avons déterminé que la toxine était présente des deux côtés de la bicouche lipidique durant le processus de perméabilisation. La dynamique d’oligomérisation de la toxine dans une bicouche lipidique sans récepteurs a été étudiée avec une technique permettant le compte des sauts de fluorescence après le photoblanchiment des fluorophore liés aux sous unités composant un oligomère présent dans la bicouche lipidique supportée. Nous avons confirmé de cette manière que la protéine formait ultimement des tétramères, et que cet état résultait de la diffusion des monomères de toxine dans la bicouche et de leur assemblage subséquent. Enfin nous avons voulu étudier le « gating » de la colicine Ia, provenant de la bactérie E.Coli, dans le but d’observer les mouvements que font deux positions supposées traverser la bicouche lipidique selon le voltage imposé aux bornes de la bicouche. Nos résultats préliminaires nous permettent d’observer un mouvement partiel (et non total) de ces positions, tel que le suggèrent les études de conductances du canal.
Resumo:
The aim of the study is to synthesise several dibenzoylakene-type systems such as acenaphthenone-2-ylidene ketones 47 and phenanthrenone-9-ylidene ketones 48 by the condensation reaction of acenaphthenequinone and phenanthrenequinone with methyl ketones. Here studies the thermal and photochemical transformations of acenaphthaenone-2-ylidene ketones 3a-c.These acenaphthenone –2-ylidene ketones underwent extensive decomposition on heating. The objectives of present study is to synthesise acenaphthenone-2-ylidene ketones by the Claisen-Schmidt condensation of acenaphthenequinone and methyl ketones, it is to synthesise phenanthrenone –9-ylidene ketones by the Claisen-Schmidt condensation of phenanthrequinone and methyl ketones, thermal studies on acenaphthenone-2-ylidene ketones and phenanthrenone-9-ylidene ketones, photochemical studies on acenaphthenone-2-ylidene ketones and phenanthrenone –9-ylidene ketones to establish the generality of dibenzoyalkene rearrangement. Cyclic voltammetric studies on these dibezoyalkenes to compare their redox behaviour with that of the cis and trans isomers of dibenzoyl-ethylene, dibenzoylstilbene. These results should provide some information about their reactivity, and to assess and exploit the potential of these systems as quinonemethides. This study conclude that a number of new dibenzolalkene-type systems have been synthesized by the Claisen-Schmidt condensation of 1,2-diketones such as phenanthequinone and acenaphthenequinone with methyl ketones. Some of these compounds have been shown to undergo interesting photochemical transformations. Based on the results it is conclude that phenanthjrenone-9-ylidene ketones are excellent Michael acceptors. Methanol adds to these to yield the corresponding furanols. These furanols are unstable and are slowly converted to phenanthro-2 (3H)-furanones.
Resumo:
The aim of the study is to synthesise several dibenzoylakene-type systems such as acenaphthenone-2-ylidene ketones 47 and phenanthrenone-9-ylidene ketones 48 by the condensation reaction of acenaphthenequinone and phenanthrenequinone with methyl ketones. Here studies the thermal and photochemical transformations of acenaphthaenone-2-ylidene ketones 3a-c.These acenaphthenone –2-ylidene ketones underwent extensive decomposition on heating. The objectives of present study is to synthesise acenaphthenone-2-ylidene ketones by the Claisen-Schmidt condensation of acenaphthenequinone and methyl ketones, it is to synthesise phenanthrenone –9-ylidene ketones by the Claisen-Schmidt condensation of phenanthrequinone and methyl ketones, thermal studies on acenaphthenone-2-ylidene ketones and phenanthrenone-9-ylidene ketones, photochemical studies on acenaphthenone-2-ylidene ketones and phenanthrenone –9-ylidene ketones to establish the generality of dibenzoyalkene rearrangement. Cyclic voltammetric studies on these dibezoyalkenes to compare their redox behaviour with that of the cis and trans isomers of dibenzoyl-ethylene, dibenzoylstilbene. These results should provide some information about their reactivity, and to assess and exploit the potential of these systems as quinonemethides. This study conclude that a number of new dibenzolalkene-type systems have been synthesized by the Claisen-Schmidt condensation of 1,2-diketones such as phenanthequinone and acenaphthenequinone with methyl ketones. Some of these compounds have been shown to undergo interesting photochemical transformations. Based on the results it is conclude that phenanthjrenone-9-ylidene ketones are excellent Michael acceptors. Methanol adds to these to yield the corresponding furanols. These furanols are unstable and are slowly converted to phenanthro-2 (3H)-furanones
Resumo:
The surface electron donor properties of sulphate modified stannic oxide have been determined from the adsorption of electron acceptors of various electron affinities on the oxide surface. The acid base properties of stannic oxide have been determined by titration method using Hammett indicators. Catalytic activities of the oxide for esterification of acetic acid using n-butanol.reduction of cyclohexanone in 2-propanol and oxidation of cyclohexanol with benzophenone have been studied. The data have been correlated with the surface electron donor properties of these oxides. The activity for reduction and oxidation decreases and that for esterification reaction increases on modification with sulphate ion. It has heen found that electron donating capacity decreased when stannic oxide was modified with sulphate ion.
Resumo:
The surface acidity/ basicity of TiO2 (rutile) and its sulphate modified form have been determined by titration method using Hammett indicators after activation at different temperatures. The electron donating properties of these oxides are also studied from the adsorption of electron acceptors of different electron affinity values. The data have been correlated with the catalytic activity of these oxides towards esterification of acetic acid using n-butanol, reduction of cyclohexanone in isopropanol and oxidation of cyclohexanol in benzophenone. Catalytic activity for esterification and oxidation reaction parallels the acidity while that for reduction reaction parallels the basicity of these oxides.
Resumo:
The changes in surface acidity/basicity and catalytic activity of cerium oxide due to surface modification by sulphate ion have been investigated. Electron donor properties of both the modified and unmodified oxides have been studied using electron acceptors of various electron affinity values, viz. 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrachloro--l, 4-benzoquinone. p-dinitrobenzene and m-dinitrobenzene in order to find out whether the increase in acidity on suphation is due to the generation of new acidic sites or they are formed at the expense of some of the basic sites. The surface acidity/basicity has been determined using a set of Hammett indicators. The data have been correlated with the catalytic activity of the oxides for esterification of acetic acid using l-butanol, reduction of cyclohexanone with 2- propanol and oxidation of cyclohexanol using benzophenone.
Resumo:
Physico-chemical characterization of DY203/V2O5 systems prepared through wet impregnation method has been carried out using various techniques like EDX, XRD, FTIR. thermal studies, BET surface area, pore volume and pore size distribution analysis. The amount of vanadia incorporated has been found to influence the surface properties of dysprosia. The spectroscopic results combining with X-ray analysis reveal that vanadia species exist predominantly as isolated amorphous vanadyl units along with crystalline dysprosium orthovanadate. Basicity studies have been conducted by adsorption of electron acceptors and acidity and acid strength distribution by temperature programmed desorption of ammonia. Cyclohexanol decomposition has been employed as a chemical probe reaction to examine the effect of vanadia on the acid base property of Dy2O3. Incorporation of vanadia titrates thc Lewis acid and base sites of Dy2O3, while an enhancement of Bronsted acid sites has been noticed. Data have been correlated with the catalytic activity of these oxides towards the vapour phase methylation of phenol
Resumo:
Sm2O3 - vanadia catalysts have been prepared by wet impregnation method using NH4VO3 solution. The surface properties of the prepared catalysts have been studied using FTIR. XRD. surface area and pore volume data. The acid-base properties of the system have been investigated by titrimetric method using Hammett indicators. adsorption of electron acceptors as well as decomposition of cyclohexanol. Phenol alkylation reaction by methanol has been carried out to investigate the catalytic activity. It has been observed that the selectivity of the products depends upon the composition of the supported system
Resumo:
The electron donating properties of Ce02 and its mixed oxides with alumina have been determined from the studies of adsorption of electron acceptors of various electron affinities on the surface of these oxides. The catalytic activity of these oxides towards some reactions such as oxidation of alcohols and reduction of ketones have been Correlated with their surface electrondonor properties. The surface acidity/basicity of these oxides have also been determined by titration method using a set of Hammett indicators.
Resumo:
The electron donating properties of La2O3 activated at 300, 500 and 800·C and its mixed oxides with alumina are reported from the studies on adsorption of electron acceptors of varying electron affinity on La203. The electron acceptors with their electron affinity values given in parenthesis are: 7,7,8,8-tetracyanoquinodimethane (2.84 eV), 2,3,5,6-tetrachloro-I,4-benzoquinone (2.40 eV) and p-dinitrobenzene(l.77eV). The basicity of the oxide has been determined by titration with n-butylamine and Ho.max values are reported. The limit of electron transfer from the oxide to the electron acceptor is between 2.40 and 1.77 eV. It is observed that La203 promotes the surface electron properties of alumina without changing its limit of electron transfer.
Resumo:
Lanthanum oxide, La2O3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La2O3 activated at 300, 500 and 800·C and its mixed oxides with alumina for the reduction of cyclohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides.
Resumo:
The electron donor properties of Nd2O3 activated at 300, 500 and 800°C were investigated through studies on the adsorption of electron acceptors of various electron affinities - 7, 7, 8,8-tetracyanoquinodimethane (2.84 eV). 2, 3, 5, 6-tetrachloro-l , 4-benzoquinone (2.40 eV). p-dinitrobenzene (1.77 eV), and m-dinitrobenzene (1.26 eV) in solvents acetonitrile and 1, 4-dioxan. The extent of electron transfer during adsorption has been found from magnetic measurements and electronic spectral data. The corresponding data on mixed oxides of neodymium and aluminium are reported for various. compositions. The acid-base properties of catalysts were also determined using a set of Hammett indicators.
Resumo:
The adsorption of electron acceptors, viz.,7,7,8,8-tetracyanoquinodimethane(TCNQ), 2,3,5,6-tetrachloro-p- benzoquinone (chloranil) and p-dinitrobenzene (PDNB) on the surface of three rare earth oxides Y2O3, Nd203 and Pr6O11 has been studied in acetonitrile and dioxan. From the radical concentration on the surface determined using ESR spectral data, the electron donor strength of the rare earth oxides are reported.