969 resultados para A1-A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the importance of the apoA-I/ABCA1 pathway in MG cholesterol transport and suggest its role in influencing milk composition and directing cholesterol back into the bloodstream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacillus anthracis, an organism ubiquitous in the soil and the causative agent of anthrax, utilizes multiple mechanisms to regulate secreted factors; one example is the activity of secreted proteases. One of the most abundant proteins in the culture supernates of B. anthracis is the Immune Inhibitor A1 (InhA1) protease. Here, I demonstrate that InhA1 modulates the abundance of approximately half of the proteins secreted into the culture supernates, including substrates that are known to contribute to the ability of the organism to cause virulence. For example, InhA1 cleaves the anthrax toxin proteins, PA, LF, and EF. InhA1 also targets a number of additional proteases, including Npr599, contributing to a complex proteolytic regulatory cascade with far-reaching affects on the secretome. Using an intra-tracheal mouse model of infection, I found that an inhA-null strain is attenuated in relation to the parent strain. The data indicate that reduced virulence of the inhA mutant strain may be the result of toxin protein deregulation, decreased association with macrophages, and/or the inability to degrade host antimicrobial peptides. Given the significant modulation of the secretome by InhA1, it is likely that expression of the protease is tightly regulated. To test this I examined inhA1 transcript and protein levels in the parent and various isogenic mutant strains and found that InhA1 expression is regulated by several mechanisms. First, the steady state levels of inhA1 transcript are controlled by the regulatory protein SinR, which inhibits inhA1 expression. Second, InhA1 abundance is inversely proportional to the SinR-regulated protease camelysin, indicating the post-transcriptional regulation of InhA1 by camelysin. Third, InhA1 activity is dependent on a conserved zinc binding motif, suggesting that zinc availability regulates InhA1 activity. The convergence of these regulatory mechanisms signifies the importance of tight regulation of InhA1 activity, activity that substantially affects how B. anthracis interacts with its environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS: Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS: Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS: Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the transcriptional regulation of serum amyloid A1 (SAA1) gene, a liver specific acute-phase gene, identified a regulatory element in its promoter that functioned to repress (SAA1) gene transcription in nonliver cells. This silencer element interacts with a nuclear protein that is detectable in HeLa cells, fibroblasts and placental tissues but not in liver or liver-derived cells. As the expression pattern of this repressor is consistent with its potential regulatory role in repressing SAA1 expression, and that many other liver gene promoters also contain this repressor binding site, we sought to investigate whether this repressor may have a broader functional role in repressing liver genes. ^ We have utilized protein purification, cell culture, transient and stable gene transfection, and molecular biology approaches to identify this protein and investigate its possible function in the regulation of (SAA1) and other liver genes. Analyses of amino acid sequence of the purified nuclear protein, and western blot and gel shift studies identified the repressor as transcription factor AP-2 or AP-2-like protein. Using transient transfection of DNA into cultured cells, we demonstrate that AP-2 can indeed function as a repressor to inhibit transcription of SAA1 gene promoter. This conclusion is supported by the following experimental results: (1) overexpression of AP-2 in hepatoma cells inhibits conditioned medium (CM)-induced expression of SAA1 promoter; (2) binding of AP-2 to the SAA1 promoter is required for AP-2 repression function; (3) one mechanism by which AP-2 inhibits SAA1 may be by antagonizing the activation function of the strong transactivator NFκB; (4) mutation of AP-2 binding sites results in derepression of SAM promoter in HeLa cells; and (5) inhibition of endogenous AP-2 activity by a dominant-negative mutant abolishes AP-2's inhibitory effect on SAM promoter in HeLa cells. In addition to the SAM promoter, AP-2 also can bind to the promoter regions of six other liver genes tested, suggesting that it may have a broad functional role in restricting the expression of many liver genes in nonliver cells. Consistent with this notion, ectopic expression of AP-2 also represses CM-mediated activation of human third component of complement 3 promoter. Finally, in AP-2-expressing stable hepatoma cell lines, AP-2 inhibits not only the expression of endogenous SAA, but also the expression of several other endogenous liver genes including albumin, α-fetoprotein. ^ Our findings that AP-2 has the ability to repress the expression of liver genes in nonliver cells opens a new avenue of investigation of negative regulation of gene transcription, and should improve our understanding of tissue-specific expression of liver genes. In summary, our data provide evidence suggesting a novel role of AP-2 as a repressor, inhibiting the expression of liver genes in nonliver cells. Thus, the tissue-specific expression of AP-2 may constitute an important mechanism contributing to the liver-specific expression of liver genes. ^

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: