1000 resultados para 81-552_Site
Resumo:
Alteration products of basalts from the four holes drilled during Leg 81 were studied and found to be characterized by the widespread occurrence of trioctahedral clay minerals (Mg smectite to chlorite). In some cases zeolites (analcite, chabazite) are associated with the saponite. A more oxidizing stage is marked by a saponite-celadonite association, presenting the geochemical characteristics of hydrothermal processes. Later stages of alteration are represented by palagonitization and subaerial weathering at two sites. These different alteration processes of basalts from Leg 81 record the paleoenvironment during the first opening stages of the Northeast Atlantic Ocean in the Paleocene-Eocene periods.
Resumo:
Three phases of volcanism have been recognized in the lower Paleogene sequence of the southwest Rockall Plateau which are related to the onset of seafloor spreading in the NE Atlantic. The earliest, Phase 1, is marked by a sequence of tholeiitic basalts and hyaloclastites which form the dipping reflector sequence in Edoras Basin. Phase 2 is characterized by tuffs and lapilli tuffs of air-fall origin, ranging in composition from basic to intermediate. They were generated by highly explosive igneous activity due to magma-water interaction, and terminate at the level of a major transgression. Subsequently, volcanism reverted to tholeiitic basalt type, producing the thin tuffs and minor basalt flows of Phase 3. Alteration of the volcanic glass and diagenesis of the tuffs and lapilli tuffs has been considerable in many cases, with a large number of diagenetic mineral phases observed, including smectite, celadonite, analcime, phillipsite, clinoptilolite, mordenite, and calcite. Although calcite is the latest observed diagenetic cement, it nevertheless occurred relatively early, in one case totally preserving basaltic glass from alteration.
Resumo:
The acid insoluble coarse fractions of the glacial-interglacial sequence of Hole 552A in the NE Atlantic are made up of varying amounts of terrigenous detritus, biogenic silica, and pyroclastic material, principally volcanic glass. Volcanic ash content varies significantly over the entire interval, and the three North Atlantic ash horizons of Ruddiman and Glover (1972) can be recognized satisfactorily. The terrigenous detritus is of mixed metamorphic-basaltic type and probably originated on the Greenland landmass
Resumo:
Five heavy mineral associations occur in the Paleocene and Eocene sediments recovered during Leg 81 of the Deep Sea Drilling Project (DSDP) in the SW Rockall area. Association 1, consisting of augite, iddingsite, and olivine, was derived from the basaltic rocks of the northern part of the Rockall Plateau. Association 2 consists of epidote group minerals, including piedmontite, and amphiboles of actinolite, actinolitic hornblende, and magnesio-hornblende compositions, and was derived from the metamorphic basement of south Greenland. Association 3 comprises garnet, augite, apatite, and edenitic and pargasitic amphiboles and has a provenance in the southern Rockall Plateau. Associations 4 (garnet, apatite, edenitic/pargasitic amphiboles) and 5 (garnet, apatite) are intrastratal solution derivatives of Association 3, with successive removal of first pyroxene and then amphibole with increasing depth of burial. Throughout the SW Rockall Plateau area there is a significant change in the spectrum of the above assemblages in the lower part of the Eocene. This change has been noted at Sites 403, 404, 553, and 555 and is defined by the last appearance of Association 2. This level therefore marks the cessation of sediment supply from southern Greenland and is the result of the final separation of Rockall and Greenland immediately prior to magnetic Anomaly 24.