939 resultados para 770300 Marine Environment
Resumo:
The study of bryozoans, an important group of coelomates in the marine environment is an integral part of faunistic investigations. Bryozones are an ancient, aberrant phylum of microscopic but fascinating and often beautiful animals that build intricate colonies sometimes resembling minicolonies. In this study taxonomy, bionomics and biofouling of bryozoans from the coasts of India and the Antarctic waters. The marine biofouling is found to be hazardous. Bryozoans are microscopic , sessile,colonical coelomates that are permanently fastened in exoskeletal cases or gelatinous material of their own secretion.It is hoped that this work would help the future researchers to devote attention on microbenthos of the continental shelf of India when samples are made available through collections conducted by any ocean going vessel. In the present work an extensive study on the bryozoan foulers that occur at five selected sites of the cochin estury had to be examined and since the hydrographic parameters such as salinity, temperature, pH and dissolved oxygen in the estury,vary greatly from that in the open ocean, a frequent monitoring of these parameters was essential.
Resumo:
Atmospheric Boundary layer (ABL) is the layer just above the earth surface and is influenced by the surface forcing within a short period of an hour or less. In this thesis, characteristics of the boundary layer over ocean, coastal and inland areas of the atmosphere, especially over the monsoon regime are thoroughly studied. The study of the coastal zone is important due to its high vulnerability mainly due to sea breeze circulation and associated changes in the atmospheric boundary layer. The major scientific problems addressed in this thesis are diurnal and seasonal variation of coastal meteorological properties, the characteristic difference in the ABL during active and weak monsoons, features of ABL over marine environment and the variation of the boundary layer structure over an inland station. The thesis describes the various features in the ABL associated with the active and weak monsoons and, the surface boundary layer properties associated with the active and weak epochs. The study provides knowledge on MABL and can be used as the estimated values of boundary layer parameters over the marine atmosphere and to know the values and variabilities of the ABL parameters such as surface wind, surface friction, drag coefficient, wind stress and wind stress curl.
Resumo:
Brasses are widely used as constructional materials in marine environment due to their anticorrosive,antifouling and mechanical properties.However, its resistance to corrosion and fouling may vary according to local marine environmental condition and the seasons.The dezincification of brass is one of the forms of selective corrosion which has attracted the attention of researchers for the last two decades.Many of the dezincification mechanistic studies have been performed in noncomplex media and hence their conclusions cannot be extended to esturine water,which is of great significance since brass is extensively used in marine environment.Inhibited α brasses are largely immune to dezincication and the effect of tin and arsenic addition to α/beta brasses is not so reliable in controlling the dezincification. There have been many cases of dezincification in duplex brasses in both freshwater and seawater.Though there is some protection methods such as inhibitors,electro deposition and electro polymerization,there is no reliable method of inhibiting the dezincification of two-phase brass.Organic coatings are effectively used for the protection metals due to their capacity to act a physical barrieer between the metal surface and corrosive environment.Hence,pure epoxy coating is selected for this as it has antocorrosiion effect on brass.The dezincification behaviour of brass of the present study has been highlighted in terms of corrosion rate,weight gain/loss,corrosion current and polarization resistence,open circuit potential,dezincification factor. The marine fouling as biomass on brass was assessed and presented in this thesis, The physicochemical properties of estuarine water were correlated with corrosion behaviour of brass.The deterioration of the brass subjected to the effect of estuarine water was also investigated as a measure of loss in mechanical properties such as tensile strength,yield strength,percntage elongation and percentage reduction in area.To validate dezincification data,visual observation,spot analysis,surface morphology before and after removal of corrosion products and corrosion product analysis were performed.The dezincification behavior of epoxy coated brass of the present study has beenhighlighted in terms of corrosion rate ,weight gain/loss,corrosion current and polarization resistance,open circuit potential.dezincification factor.The marine fouling as biomass on epoxy coated brass subjeted to the effect of estuarine water was also investigated as ameasure of loss in mechanical properties such as tensile strength,percentage elongation and percentage reduction in area.The results of dezincification behavior of brass and epoxy coated brass in Cochin estuary water has been presented and discussed.Attempt has been made to correlate the dezincification behavior of brass with epoxy coated brass.
Resumo:
The temperate, filamentous phage ФMV -5 isolated from Mangalavanam mangrove of Kochi, using the environmental strain of Vibrio sp. MV-5 shares many similar properties with other marine phage isolates, while also remaining unique. The study has revealed that the interaction of temperate phages and the microbial population in the marine environment may contribute significantly to microbial genetic diversity and composition by conversion and transduction and which requires greater study.Prophages contribute a substantial share of the mobile DNA of their bacterial hosts and seem to influence the short-term evolution of pathogenic bacteria. Automated methods for systematic investigation of prophages and other mobile DNA elements in the available bacterial genome sequences will be necessary to understand their role in bacterial genome evolution. In the past, phages were mainly investigated as the simplest model systems in molecular biology. Now it is increasingly realized that phage research will be instrumental in the understanding of bacterial abundance in the environment. One can predict that phage research will impact diverse areas such as geochemistry and medicine. Success will largely depend on integrative multidisciplinary approaches in this field. Clearly, further studies are required to understand how vibriophages interact with Vibrios to promote this organism's acquisition of the critical genes which alter its virulence or adaptation to its environmental niche.It is evident from this study and comparison with those reports cited above that vibriophage ФMV-5 is a previously unreported bacteriophage. It is recommended that the minimum requirement for reporting a new phage should be novel morphological markers and a description of host range, both of which have been achieved in this study.
Resumo:
Warships are generally sleek, slender with V shaped sections and block coefficient below 0.5, compared to fuller forms and higher values for commercial ships. They normally operate in the higher Froude number regime, and the hydrodynamic design is primarily aimed at achieving higher speeds with the minimum power. Therefore the structural design and analysis methods are different from those for commercial ships. Certain design guidelines have been given in documents like Naval Engineering Standards and one of the new developments in this regard is the introduction of classification society rules for the design of warships.The marine environment imposes subjective and objective uncertainties on ship structure. The uncertainties in loads, material properties etc.,. make reliable predictions of ship structural response a difficult task. Strength, stiffness and durability criteria for warship structures can be established by investigations on elastic analysis, ultimate strength analysis and reliability analysis. For analysis of complicated warship structures, special means and valid approximations are required.Preliminary structural design of a frigate size ship has been carried out . A finite element model of the hold model, representative of the complexities in the geometric configuration has been created using the finite element software NISA. Two other models representing the geometry to a limited extent also have been created —- one with two transverse frames and the attached plating alongwith the longitudinal members and the other representing the plating and longitudinal stiffeners between two transverse frames. Linear static analysis of the three models have been carried out and each one with three different boundary conditions. The structural responses have been checked for deflections and stresses against the permissible values. The structure has been found adequate in all the cases. The stresses and deflections predicted by the frame model are comparable with those of the hold model. But no such comparison has been realized for the interstiffener plating model with the other two models.Progressive collapse analyses of the models have been conducted for the three boundary conditions, considering geometric nonlinearity and then combined geometric and material nonlinearity for the hold and the frame models. von Mises — lllyushin yield criteria with elastic-perfectly plastic stress-strain curve has been chosen. ln each case, P-Delta curves have been generated and the ultimate load causing failure (ultimate load factor) has been identified as a multiple of the design load specified by NES.Reliability analysis of the hull module under combined geometric and material nonlinearities have been conducted. The Young's Modulus and the shell thickness have been chosen as the variables. Randomly generated values have been used in the analysis. First Order Second Moment has been used to predict the reliability index and thereafter, the probability of failure. The values have been compared against standard values published in literature.
Resumo:
This thesis entitled “Contribution of size fractions of planktonic algae to primary organic productivity in the coastal waters of cochin,south west coast of india”. Marine ecosystems planktonic algae are the most important primary producers on wliich considerable attention is being given on account of their supreme status in the marine food chain.The study of primary production in the Indian Ocean started With DANA (I928-30),, John Murray t I933-34). Discovery ( I934) and Albatross (I947-48) expeditions which tried to evaluate productivity from nutrients and standing crop of phytoplankton .The bioproductivity of the marine environment is dependent on various primary producers. ranging in size from picoplankton to larger macro phytoplankton. The quantity and quality of various size fractions of planktonic algae at any locality depend mainly on the hydrographic conditions of the area .In the coastal waters of Cochin- south west coast of lndia. Planktonic algal community is composed mainly of the diatoms, the dinoflagellates, the blue-green algae and the silicoflagellates, the former two contributing the major flora and found distributed in the all size fractions. The maximum number of species of diatoms at station 1 and station 2 was found in the pre-monsoon season.. The size groups of planktonic algae greater than 53 um are dominated by filamentous- chain forming and colonial diatoms. The coastal waters of Cochin. planktonic algae less than 53 um in size contribute significantly to primary productivity and the biodiversity of the microflora, indicating the presence of rich fishery resources in the south west coast of india.The study of different size fractions of planktonic algae and their relative contribution to the primary organic production is a useful tool for the estimation of the quantity and quality of fisheries.A deeper investigation on the occurrence of these microalgae and proper identification of their species would be of immense help for the assessment of the specificity and magnitude of fishery resources.
Resumo:
Industrial pollutants, consisting of heavy metals, petroleum residues, petrochemicals, and a wide spectrum of pesticides, enter the marine environment on a massive scale and pose a very serious threat to all forms of aquatic life. Although, earlier, efforts were directed towards the identification of pollutants and their major sources, because of a growing apprehension about the potential harm that pesticides can inflict upon various aquatic fauna and flora, research on fundamental and applied aspects of pesticides in the aquatic environment has mushroomed to a point where it has become difficult to even keep track of the current advances and developments. The Cochin Estuarine System (CES), adjoining the Greater Cochin area, receives considerable amounts of domestic sewage, urban wastes, agricultural runoff as well as effluent from the industrial units spread all along its shores. Since preliminary investigations revealed that the most prominent of organic pollutants discharged to these estuarine waters were the pesticides, the present study was designed to analyse the temporal and spatial distribution profile of some of the more toxic, persistent pesticides ——— organochlorines such as DDT and their metabolites; HCH-isomers; a cyclodiene compound," Endosulfan and a widely distributed, easily degradable, organophosphorus compound, Malathion, besides investigating their sorptional and toxicological characteristics. Although, there were indications of widespread contamination of various regions of the CBS with DDT, HCH-isomers etc., due to inadequacies of the monitoring programmes and due to a glaring void of baseline data the causative factors could not identified authentically. Therefore, seasonal and spatial distributions of some of the more commonly used pesticides in the CES were monitored systematically, (employing Gas Chromatographic techniques) and the results are analysed.
Resumo:
This thesis reports on the details of the works done to develop a complete system for acquisition of the important marine environmental parameters namely, current, current direction, salinity, temperature and depth. It encompaéps transducers,signalconditioners display arrangements and remote controlled multiplexer which constitue the system. The various associate instruentation and environmental requisites and problems have been discussed and solved to considerable extend. The design and development features of this composite system includes an integrated approach in order to make the final equipment to be simple, inexpensive and easy for operation from small and large boats. This could be achieved with the successful development of all required components with features matching between them, such as sensors, signals conditioners remote operated multiplexers, comon display methods, quick performance check and calibration methods. The major success rests on the development of sensors with excellent performance characteristics suitable for marine environment. out of the 5 sensors. that of current salinity and depth are quite noval types with specific advantages. The environmental effects have been eliminated to the required extend. The common signal conditioner for salinity, temperature and depth has noval design features for achieving simplicity, reliability and accomodating the three sensors of different functional requirements.
Resumo:
Cumacea plays an important role in the marine environment as food for man and comercially important species of fishes . Hence it is desirable to have a better knowledge of the taxonomy, ecology, biology and distribution of the various species of Cumacea. The present work is directed towards the study of the above aspects
Resumo:
The present study is concentrated on a composite group of algae of phy— toplankton. The algae in the aquatic environment are the most important of all ch1orophy1l- bearing life on earth on which considerable attention is being given on account of their supreme status in the aquatic food chain. Though the higher plants serve as the major primary producers in the terrestrial biocycle, the primary producers in the aquatic ecosystem especially in the marine environment-" assume unparalleled significance ‘because of their c'ontribution.to the high magnitude of production generating the fishery resources
Resumo:
The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth
Resumo:
The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.
Resumo:
Information on the distribution of dissolved Folin phenol active substances (FPAS) such as tannin and lignin in the seawater along the west coast of India is provided. Notable amounts of FPAS (surface concentrations: 80 f.1gll to 147 f.1gll and bottom concentrations: 80 f.1gll to 116 f.1gll) were detected in the seawater along the coast. The distribution pattern brings about a general depth-wise decrease. A seaward decrease was observed in the southern stations whereas reverse was the case in northern stations. A significant negative correlation was observed between FPAS concentration and dissolved oxygen in sub-surface samples. The appreciable amounts of FPAS detected in the coastal waters indicate the presence of organic matter principally originating from terrestrial (upland and coastal marsh) ecosystems in the marine environment. In this context, they may be used as tracers to determine the fate of coastalborn dissolved organic matter in the ocean and to determine directly the relationship between allochthonous and autochthonous organic matter
Resumo:
Geochemical composition is a set of data for predicting the climatic condition existing in an ecosystem. Both the surficial and core sediment geochemistry are helpful in monitoring, assessing and evaluating the marine environment. The aim of the research work is to assess the relationship between the biogeochemical constituents in the Cochin Estuarine System (CES), their modifications after a long period of anoxia and also to identify the various processes which control the sediment composition in this region, through a multivariate statistical approach. Therefore the study of present core sediment geochemistry has a critical role in unraveling the benchmark of their characterization. Sediment cores from four prominent zones of CES were examined for various biogeochemical aspects. The results have served as rejuvenating records for the prediction of core sediment status prevailing in the CES
Resumo:
Geochemical composition is a set of data for predicting the climatic condition existing in an ecosystem. Both the surficial and core sediment geochemistry are helpful in monitoring, assessing and evaluating the marine environment. The aim of the research work is to assess the relationship between the biogeochemical constituents in the Cochin Estuarine System (CES), their modifications after a long period of anoxia and also to identify the various processes which control the sediment composition in this region, through a multivariate statistical approach. Therefore the study of present core sediment geochemistry has a critical role in unraveling the benchmark of their characterization. Sediment cores from four prominent zones of CES were examined for various biogeochemical aspects. The results have served as rejuvenating records for the prediction of core sediment status prevailing in the CES