942 resultados para 5-HT2A receptor
Resumo:
The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^
Resumo:
Recent studies have identified the potential for an important role for serotonin (5-HT) receptors in the developmental plasticity of the kitten visual cortex. 5-HT2C receptors are transiently expressed in a patchy fashion in the visual cortex of kittens between 30–80 days of age complementary to patches demarcated by cytochrome oxidase staining. 5-HT, operating via 5-HT2C receptors, increases cortical synaptic plasticity as assessed both in brain slices and in vivo. Herein, we report that bath application of 5-HT substantially increases the probability of long-term potentiation within 5-HT2C receptor-rich zones of cortex, but this effect is not observed in the 5-HT2C receptor-poor zones. Instead, in these zones, 5-HT application increases the probability of long-term depression. These location-specific effects of 5-HT may promote the formation of compartment-specific cortical responses.
Resumo:
Release of Ca2+ stored in endoplasmic reticulum is a ubiquitous mechanism involved in cellular signal transduction, proliferation, and apoptosis. Recently, sphingolipid metabolites have been recognized as mediators of intracellular Ca2+ release, through their action at a previously undescribed intracellular Ca2+ channel. Here we describe the molecular cloning and characterization of a protein that causes the expression of sphingosyl-phosphocholine-mediated Ca2+ release when its complementary RNA is injected into Xenopus oocytes. SCaMPER (for sphingolipid Ca2+ release-mediating protein of endoplasmic reticulum) is an 181 amino acid protein with two putative membrane-spanning domains. SCaMPER is incorporated into microsomes upon expression in SO cells or after translation in vitro. It mediates Ca2+ release at 4 degrees C as well as 22 degrees C, consistent with having ion channel function. The EC50 for Ca2+ release from Xenopus oocytes is 40 microM, similar to sphingosyl-phosphocholine-mediated Ca2+ release from permeabilized mammalian cells. Because Ca2+ release is not blocked by ryanodine or La3+, the activity described here is distinct from the Ca2+ release activity of the ryanodine receptor and the inositol 1,4,5-trisphosphate receptor. The properties of SCaMPER are identical to those of the sphingolipid-gated Ca2+ channel that we have previously described. These findings suggest that SCaMPER is a sphingolipid-gated Ca2+-permeable channel and support its role as a mediator of this pathway for intracellular Ca2+ signal transduction.
Resumo:
Peroxisome proliferators cause rapid and coordinated transcriptional activation of genes encoding peroxisomal beta-oxidation system enzymes by activating peroxisome proliferator-activated receptor (PPAR) isoform(s). Since the thyroid hormone (T3; 3,3',5-triiodothyronine) receptor (TR), another member of the nuclear hormone receptor superfamily, regulates a subset of fatty acid metabolism genes shared with PPAR, we examined the possibility of interplay between peroxisome proliferator and T3 signaling pathways. T3 inhibited ciprofibrate-induced luciferase activity as well as the endogenous peroxisomal beta-oxidation enzymes in transgenic mice carrying a 3.2-kb 5'-flanking region of the rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene fused to the coding region of luciferase. Transfection assays in hepatoma H4-II-E-C3 and CV-1 cells indicated that this inhibition is mediated by TR in a ligand-dependent fashion. Gel shift assays revealed that modulation of PPAR action by TR occurs through titration of limiting amounts of retinoid X receptor (RXR) required for PPAR activation. Increasing amounts of RXR partially reversed the inhibition in a reciprocal manner; PPAR also inhibited TR activation. Results with heterodimerization-deficient TR and PPAR mutants further confirmed that interaction between PPAR and TR signaling systems is indirect. These results suggest that a convergence of the peroxisome proliferator and T3 signaling pathways occurs through their common interaction with the heterodimeric partner RXR.
Resumo:
Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo.
Resumo:
Receptores purinérgicos e canais de cálcio voltagem-dependentes estão envolvidos em diversos processos biológicos como na gastrulação, durante o desenvolvimento embrionário, e na diferenciação neural. Quando ativados, canais de cálcio voltagem-dependentes e receptores purinérgicos do tipo P2, ativados por nucleotídeos, desencadeiam transientes de cálcio intracelulares controlando diversos processos biológicos. Neste trabalho, nós estudamos a participação de canais de cálcio voltagem-dependentes e receptores do tipo P2 na geração de transientes de cálcio espontâneos e sua regulação na expressão de fatores de transcrição relacionados com a neurogênese utilizando como modelo células tronco (CTE) induzidas à diferenciação em células tronco neurais (NSC) com ácido retinóico. Descrevemos que CTE indiferenciadas podem ter a proliferação acelerada pela ativação de receptores P2X7, enquanto que a expressão e a atividade desse receptor precisam ser inibidas para o progresso da diferenciação em neuroblasto. Além disso, ao longo da diferenciação neural, por análise em tempo real dos níveis de cálcio intracelular livre identificamos 3 padrões de oscilações espontâneas de cálcio (onda, pico e unique), e mostramos que ondas e picos tiveram a frequência e amplitude aumentadas conforme o andamento da diferenciação. Células tratadas com o inibidor do receptor de inositol 1,4,5-trifosfato (IP3R), Xestospongin C, apresentaram picos mas não ondas, indicando que ondas dependem exclusivamente de cálcio oriundo do retículo endoplasmático pela ativação de IP3R. NSC de telencéfalo de embrião de camundongos transgênicos ou pré-diferenciadas de CTE tratadas com Bz-ATP, o agonista do receptor P2X7, e com 2SUTP, agonista de P2Y2 e P2Y4, aumentaram a frequência e a amplitude das oscilações espontâneas de cálcio do tipo pico. Dados, obtidos por microscopia de luminescência, da expressão em tempo real de gene repórter luciferase fusionado à Mash1 e Ngn2 revelou que a ativação dos receptores P2Y2/P2Y4 aumentou a expressão estável de Mash1 enquanto que ativação do receptor P2X7 levou ao aumento de Ngn2. Além disso, células na presença do quelante de cálcio extracelular (EGTA) ou do depletor dos estoques intracelulares de cálcio do retículo endoplasmático (thapsigargin) apresentaram redução na expressão de Mash1 e Ngn2, indicando que ambos são regulados pela sinalização de cálcio. A investigação dos canais de cálcio voltagem-dependentes demonstrou que o influxo de cálcio gerado por despolarização da membrana de NSC diferenciadas de CTE é decorrente da ativação de canais de cálcio voltagem-dependentes do tipo L. Além disso, esse influxo pode controlar o destino celular por estabilizar expressão de Mash1 e induzir a diferenciação neuronal por fosforilação e translocação do fator de transcrição CREB. Esses dados sugerem que os receptores P2X7, P2Y2, P2Y4 e canais de cálcio voltagem-dependentes do tipo L podem modular as oscilações espontâneas de cálcio durante a diferenciação neural e consequentemente alteram o padrão de expressão de Mash1 e Ngn2 favorecendo a decisão do destino celular neuronal.
Resumo:
Introdução: A identificação de variantes genéticas que predispõem a maior susceptibilidade à dependência à nicotina pode ser importante para a prevenção e o tratamento do tabagismo. No contexto de medicina personalizada, os principais objetivos do presente estudo foram avaliar se polimorfismos nos genes CHRNA2, CHRNA3, CHRNA5 e CHRNB3 estão associados com o nível de dependência em indivíduos fumantes e com o resultado do tratamento antitabágico. Métodos: Estudo de coorte com 1049 pacientes fumantes que receberam tratamento farmacológico (vareniclina, vareniclina e bupropiona, bupropiona e/ou terapia de reposição nicotínica). O sucesso na cessação tabágica foi considerado para os pacientes que completaram 6 meses de abstinência contínua. O teste de Fagerström para a dependência à nicotina (FTND) e o escore de consumo situacional Issa foram utilizados para avaliar a dependência à nicotina. A escala de conforto PAF foi utilizada para avaliar o conforto do paciente durante o tratamento. Os polimorfismos CHRNA2 rs2472553, CHRNA3 rs1051730, CHRNA5 rs16969968, CHRNA5 rs2036527 e CHRNB3 rs6474413 foram genotipados pela análise da curva de melting. Resultados: As mulheres portadoras dos genótipos GA e AA para os polimorfismos CHRNA5 rs16969968 e rs2036527 obtiveram maior taxa de sucesso no tratamento antitabagismo: 44,0% e 56,3% (rs16969968), 41,5% e 56,5% (rs2036527), respectivamente; em comparação com as mulheres portadoras do genótipo GG: 35,7% (rs16969968) e 34,8% (rs2036527), (P=0,03; n=389; P=0,01; n=391). Os genótipos GA ou AA para os rs16969968 e rs2036527 foram associados com maior OR para o sucesso em mulheres (OR=1,63; IC 95%=1,04-2,54; P=0,03 e OR=1,59; IC 95%=1,02-2,48; P=0,04; respectivamente), em um modelo multivariado. Não foi encontrada associação dos polimorfismos no gene CHRNA5 com o escore de FTND. Para os polimorfismos CHRNA2 rs2472553, CHRNA3 rs1051730 e CHRNB3 rs6474413 não foram encontradas associações significativas com os fenótipos estudados. Conclusão: Os polimorfismos rs16969968 e rs2036527 no gene CHRNA5 foram associados com maior taxa de sucesso no tratamento antitabagismo em mulheres. Estes resultados podem contribuir com avanços na terapêutica baseada em medicina personalizada
Resumo:
The prevalence of dementia is growing in developed countries where elderly patients are increasing in numbers. Neurotransmission modulation is one approach to the treatment of dementia. Cholinergic precursors, anticholinesterases, nicotine receptor agonists and muscarinic M-2 receptor antagonists are agents that enhance cholinergic neurotransmission and that depend on having some intact cholinergic innervation to be effective in the treatment of dementia. The cholinergic precursor choline alfoscerate may be emerging as a potential useful drug in the treatment of dementia, with few adverse effects. Of the anticholinesterases, donepezil, in addition to having a similar efficacy to tacrine in mild-to-moderate Alzheimer's disease (AD), appears to have major advantages; its use is associated with lower drop-out rates in clinical trials, a lower incidence of cholinergic-like side effects and no liver toxicity. Rivastigmine is efficacious in the treatment in dementia with Lewy bodies, a condition in which the other anticholinesterases have not been tested extensively to date. Galantamine is an anticholinesterase and also acts as an allosteric potentiating modulator at nicotinic receptors to increase the release of acetylcholine. Pooled data from clinical trials of patients with mild-to-moderate AD suggest that the benefits and safety profile of galantamine are similar to those of the anticholinesterases. Selective nicotine receptor agonists are being developed that enhance cognitive performance without influencing autonomic and skeletal muscle function, but these have not yet entered clinical trial for dementia. Unlike the cholinergic enhancers, the M, receptor agonists do not depend upon intact cholinergic nerves but on intact M, receptors for their action, which are mainly preserved in AD and dementia with Lewy bodies. The M, receptor-selective agonists developed to date have shown limited efficacy in clinical trials and have a high incidence of side effects. A major recent advancement in the treatment of dementia is memantine, a non-competitive antagonist at NMDA receptors. Memantine is beneficial in the treatment of severe and moderate to-severe AD and may also be of some benefit in the treatment of mild-to-moderate vascular dementia. Drugs that modulate 5-HT, somatostatin and noradrenergic neurotransmission are also being considered for the treatment of dementia.
Resumo:
Myopia (short-sightedness) is a visual problem associated with excessive eye growth and vitreous chamber expansion. Within the eye serotonin (5-hydroxytryptamine, 5-HT) appears to have a variety of effects, it alters retinal amacrine cell processing, increases intraocular pressure, constricts ocular blood vessels, and is also mitogenic. This study sought to determine the role of the retinal serotonin system in eye growth regulation. Myopia was produced in 7-day-old chicks using -15 D spectacle lenses (LIM) and form deprivation (FDM). The effect on LIM and FDM of daily intravitreal injections of a combination of 5-HT receptor antagonists (1, 10, 50 mu M), 5-HT2 selective antagonist (Mianserin 0.5, 20 mu M) were assessed. Counts were performed of serotonin and tyrosine hydroxylase positive neurons and the relative density used to account for areal changes due to eye growth. The effect of LIM and lens-induced hyperopia (LIH) on the numbers of 5-HT-containing amacrine cells in the retina were then determined. The combination of the 5-HT receptor antagonists inhibited LIM by approximately half (1 mu M RE: -7.12 +/- 1.0 D, AL: 0.38 +/- 0.06 mm vs. saline RE: -13.19 +/- 0.65 D, AL: 0.64 +/- 0.03 mm. RE: p < 0.01, AL: p < 0.01), whereas FDM was not affected (1 mu M RE: -8.88 +/- 1.10 D). These data suggest that serotonin has a stimulatory role in LIM, although high doses of serotonin were inhibitory (1 mu M RE: -9.30 +/- 1.34 D). 5-HT immunoreactivity was localised to a subset of amacrine cell bodies in the inner nuclear layer of the retina, and to two synaptic strata in the inner plexiform layer. LIM eyes had increased numbers of 5-HT-containing amacrine cells in the central retina (12.5%). Collectively, these results suggest that manipulations to the serotonin system can alter the eye growth process but the role of the transmitter system within this process remains unclear. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with similar to 50% protein identity to adenosyl homocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-L-homocysteine, the by-product of S-adenosyl-L-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs(zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, the major route of tryptophan. (TRP) metabolIsm. In the liver, cortisol-inducible tIyptophan-2,3-dioxygenase (TDO) is the first enzyme and rate limiting step. In extrahepatic tissues, it is superceded by indoleamine-2,3-dioxygenase (IDO), an enzyme with a wider substrate specificity. Earlier work in this research group has found substantial elevations in plasma KYN in fasting Tourette's Syndrome (TS) patients with normal TRP and neopterin. The aim of our initial pilot study was to confirm this increase in KYN in fasting human TS patients compared with normal controls, and to see how changes in diet :ay influence certain kynurenine pathway variables. However, we failed to detect a change in plasma KYN, TRP, kynurenic acid (KYNA), neopterin or cortisol between the fasting TS and control groups. Moreover, none of the variables was affected by dietary status, and thus candidates selected for the larger cross-sectional study were permitted to eat and drink freely on the day that blood samples were submitted, but were requested to avoid products containing caffeine, aspirin or nicotine. In the cross-sectional study, TS patients exhibited significantly higher plasma KYN concentrations than controls, although the magnitude of the change was much smaller than originally found. This may be due to differences in detection procedure and the seasonal fluctuation of some biochemical variables, notably cortisol. The generalised increase in neopterin in the TS subject group, suggests a difference in the activity of cytokine-inducible IDO as a likely source for this elevated KYN. Other kynurenine pathway metabolites, specifIcally TRP, 3-hydroxykynurenine (HKY), 3-hydroxyanthranilic acid (HAA) and KYNA were unchanged. In view of recent speculation of the potential therapeutic effects of nicotine in TS, the lower KYN concentrations observed in TS smokers, compared with non-smoking TS patients, was another interesting finding. Tic-like movements, such as head-shakes (HS), which occur in rodents both spontaneously and following diverse drug treatments, closely resemble tic behaviours in humans. The animal tic model was used to examine what effects nicotine may have on shaking behaviours and on selected TRP metabolites. Acute systemic administration of nicotine to mice, produced a dose-dependent reduction in HS frequency (induced by the 5-HT2A/2C agonist DOl), which appeared to be mediated via central nicotinic cholinergic receptors, since mecamylamine pretreatment abolished this effect. Conversely, twice daily subcutaneous injections of nicotine for 7 days, led to an increase in spontaneous and DOI-induced HS. Chronic nicotine also caused a significant elevation m plasma and whole brain KYN concentrations, but plasma TRP, HKY, HAA and KYNA were unaltered. In addition, no change in brain 5-HT or 5-HIAA concentrations or 5-HT turnover, was found. Despite contrasting results from human and animal studIes, a role for nicotine in the mediation of tic-like movements is indicated. The relevance of the kynurenine pathway to TS and the potential role played by nicotine in modifying tic-like behaviours is discussed.
Resumo:
A study has been made of drugs acting at 5-HT receptors on animal models of anxiety. An elevated X-maze was used as a model of anxiety for rats and the actions of various ligands for the 5-HT receptor, and its subtypes, were examined in this model. 5-HT agonists, with varying affinities for the 5-HT receptor subtypes, were demonstrated to have anxiogenic-like activity. The 5-HT2 receptor antagonists ritanserin and ketanserin exhibited an anxiolytic-like profile. The new putatuve anxiolytics ipsapirone and buspirone, which are believed to be selective for 5-HT1 receptors, were also examined. The former had an anxiolytic profile whilst the latter was without effect. Antagonism studies showed the anxiogenic response to 8-hydroxy-2-(Di-n-propylamino)tetralin (8-OH-DPAT) to be antagonised by ipsapirone, pindolol, alprenolol and para-chlorophenylalanine, but not by diazepam, ritanserin, metoprolol, ICI118,551 or buspirone. To confirm some of the results obtained in the elevated X-maze the Social Interaction Test of anxiety was used. Results in this test mirrored the effects seen with the 5-HT agonists, ipsapirone and pindolol, whilst the 5-HT2 receptor antagonists were without effect. Studies using operant conflict models of anxiety produced marginal and varying results which appear to be in agreement with recent criticisms of such models. Finally, lesions of the dorsal raphe nucleus (DRN) were performed in order to investigate the mechanisms involved in the production of the anxiogenic response to 8-OH-DPAT. Overall the results lend support to the involvement of 5-HT, and more precisely 5-HT1, receptors in the manifestation of anxiety in such animal models.
Resumo:
The study of tic-like movements in mice has demonstrated close parallels both in characteristics and in pharmacology with the tics which occur in TS. Head-shakes and/or other tic-like behaviours occurring spontaneously or induced by the selective 5-HT2/1C agonist DOI, alpha-melanocyte stimulating hormone, adrenocorticotrophic hormone (1-39), thyrotropin releasing hormone, or RX336-M were blocked when tested with neuroleptics such as haloperidol and/or the alpha-2 adrenoceptor agonist clonidine. The selective dopamine D1 antagonists SCH23390 and SCH39166 dose-dependently blocked spontaneous and DOI head-shakes but the selective dopamine D2 antagonists sulpiride and raclopride were ineffective. The 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone, gepirone, MDL 73005EF and buspirone (i.p) dose-dependently blocked DOI head-shakes, pindolol blocked the inhibitory effect of 8-OH-DPAT on DOI head-shakes. Parachlorophenylalanine blocked the inhibitory effect of 8-OH-DPAT and buspirone, suggesting that the 5-HT1A receptor involved is located presynaptically. The alpha-2 adrenoceptor antagonists yohimbine, idazoxan, 1-PP and RX811059 prevented the inhibitory effect of 8-OH-DPAT on DOI head-shakes suggesting that this 5-HT1A - 5-HT2 receptor interaction is under the modulatory control of adrenoceptors. Because kynurenine has previously been found to potentiate head-shaking, plasma kynurenine concentrations were measured in seven TS patients and were significantly higher than controls, but neopterin and biopterin were unchanged. The relationship between tic-like movements in rodents and their implications for understanding the aetiology and treatment of TS is discussed.
Resumo:
Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C2C12 murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca2 +i, which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) also induced a rise in Ca2 +i, but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca2 +i induced by PIF and AngII was completely attenuated by the Zn2 + chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn2 +. The Ca2 +i rise induced by PIF was independent of the presence of extracellular Ca2 +, and attenuated by the Ca2 + pump inhibitor thapsigargin, suggesting that the Ca2 +i rise was due to release from intracellular stores. This rise in Ca2 +i induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca2 +i, which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.
Resumo:
Astrocytes in the rat thalamus display spontaneous [Ca2+]i oscillations that are due to intracellular release, but are not dependent on neuronal activity. In this study we have investigated the mechanisms involved in these spontaneous [Ca2+]i oscillations using slices loaded with Fluo-4 AM (5 μM) and confocal microscopy. Bafilomycin A1 incubation had no effect on the number of spontaneous [Ca2+]i oscillations indicating that they were not dependent on vesicular neurotransmitter release. Oscillations were also unaffected by ryanodine. Phospholipase C (PLC) inhibition decreased the number of astrocytes responding to metabotropic glutamate receptor (mGluR) activation but did not reduce the number of spontaneously active astrocytes, indicating that [Ca2+]i increases are not due to membrane-coupled PLC activation. Spontaneous [Ca2+]i increases were abolished by an IP3 receptor antagonist, whilst the protein kinase C (PKC) inhibitor chelerythrine chloride prolonged their duration, indicating a role for PKC and inositol 1,4,5,-triphosphate receptor activation. BayK8644 increased the number of astrocytes exhibiting [Ca2+]i oscillations, and prolonged the responses to mGluR activation, indicating a possible effect on store-operated Ca2+ entry. Increasing [Ca2+]o increased the number of spontaneously active astrocytes and the number of transients exhibited by each astrocyte. Inhibition of the endoplasmic reticulum Ca2+ ATPase by cyclopiazonic acid also induced [Ca2+]i transients in astrocytes indicating a role for cytoplasmic Ca2+ in the induction of spontaneous oscillations. Incubation with 20 μM Fluo-4 reduced the number of astrocytes exhibiting spontaneous increases. This study indicates that Ca2+ has a role in triggering Ca2+ release from an inositol 1,4,5,-triphosphate sensitive store in astrocytes during the generation of spontaneous [Ca2+]i oscillations