955 resultados para 370301 Biological (Physical) Anthropology
Resumo:
An oxovanadium(IV) complex of dipyridophenazine, as a potent metal-based PDT agent, shows efficient DNA photocleavage activity at near-IR region and high photocytotoxicity in both UV-A and visible light in HeLa cells.
Resumo:
Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.
Resumo:
Mikania micrantha, Kunth. H.B.K (Asteraceae) or mile-a-minute is a weed of Neotropical origin in 17 Pacific Island countries. It is becoming increasingly regarded as an invasive weed in Papua New Guinea and is now the focus of an Australian Government-funded biological control program. As part of the program, growth rates, distribution and physical and socia-economic impacts were studied to obtain baseline data and to assist with the field release of biological control agents. Through public awareness campaigns and dedicated surveys, mikania has been reported in most lowland provinces. It is particularly widespread in East New Britain and West New Britain Province. In field trials, mikania grew more than 1 metre per month in open sunny areas but slightly slower when growing under cocoa. The weed invades a wide range of land types, impacting on plantations and food gardens, smothering pawpaw, young cocoa, banana, taro, young oil palms and ornamental plants. In socia-economic surveys, mikania was found to have severe impacts on crop production and income generated through reduced yields and high weeding costs. These studies suggest that there would be substantial benefits to the community if biological control of mikania is successful.
Resumo:
Mikania micrantha or mile-a-minute is regarded as a major invasive weed in Papua New Guinea (PNG) and is now the target of a biological control program. As part of the program, distribution and physical and socioeconomic impacts of M. micrantha were studied to obtain baseline data and to assist with field release of biological control agents. Through public awareness campaigns and dedicated surveys, M. micrantha has been reported in all 15 lowland provinces. It is particularly widespread in East New Britain, as well as in West New Britain and New Ireland. A CLIMEX model suggests that M. micrantha has the potential to continue to spread throughout all lowland areas in PNG. The weed was found in a wide range of land uses, impacting on plantations and food gardens and smothering papaya, young cocoa, banana, taro, young oil palms, and ornamental plants. In socioeconomic surveys, M. micrantha was found to have severe impacts on crop production and income generated through reduced yields and high weeding costs, particularly in subsistence mixed cropping systems. About 89% of all respondents had M. micrantha on their land, and 71% of respondents had to weed monthly. Approximately 96% of respondents in subsistence mixed cropping systems used only physical means of control compared with 68% of respondents in other farming systems. About 45% of all respondents estimated that M. micrantha causes yield losses in excess of 30%. These studies suggest that there would be substantial benefits to landholders if biological control of M. micrantha were to be successful.
Resumo:
The project examined coastal and physical oceanographic influences on the catch rates of coral trout (Plectropomus leopardus) and saucer scallops (Amusium balloti) in Queensland. The research was undertaken to explain variation observed in the catches, and to improve quantitative assessment of the stocks and management advice. 3.1 OBJECTIVES 1. Review recent advances in the study of physical oceanographic influences on fisheries catch data, and describe the major physical oceanographic features that are likely to influence Queensland reef fish and saucer scallops. 2. Collate Queensland’s physical oceanographic data and fisheries (i.e. reef fish and saucer scallops) data. 3. Develop stochastic population models for reef fish and saucer scallops, which can link physical oceanographic features (e.g. sea surface temperature anomalies) to catch rates, biological parameters (e.g. growth, reproduction, natural mortality) and ecological aspects (e.g. spatial distribution).
Resumo:
The thesis consists of five international congress papers and a summary with an introduction. The overarching aim of the studies and the summary is to examine the inner coherency of the theological and anthropological thinking of Gregory of Nyssa (331-395). To the issue is applied an "apophatic approach" with a "Christological focus". It is suggested that the coherency is to be found from the Christological concept of unity between "true God" and "true man" in the one person of Jesus Christ. Gregory is among the first to make a full recognition of two natures of Christ, and to use this recognition systematically in his writings. The aim of the studies is pursued by the method of "identification", a combination of the modern critical "problematic method" and Gregory's own aphairetic method of "following" (akolouthia). The preoccupation with issues relating to the so-called Hellenization of Christianity in the patristic era was strong in the twentieth-century Gregory scholarship. The most discussed questions have been the Greek influence in his thought and his philosophical sources. In the five articles of the thesis it is examined how Gregory's thinking stands in its own right. The manifestly apophatic character of his theological thinking is made a part of the method of examining his thought according to the principles of his own method of following. The basic issue concerning the relation of theology and anthropology is discussed in the contexts of his central Trinitarian, anhtropological, Christological and eschatological sources. In the summary the Christocentric integration of Gregory's thinking is discussed also in relation to the issue of the alledged Hellenization. The main conclusion of the thesis concerns the concept of theology in Gregory. It is not indebted to the classical concept of theology as metaphysics or human speculation of God. Instead, it is founded to the traditional Judeo-Christian idea of God who speaks with his people face to face. In Gregory, theologia connotes the oikonomia of God's self-revelation. It may be regarded as the state of constant expression of love between the Creator and his created image. In theology, the human person becomes an image of the Word by which the Father expresses his love to "man" whom he loves as his own Son. Eventually the whole humankind, as one, gives the divine Word a physical - audible and sensible - Body. Humankind then becomes what theology is. The whole humanity expresses divine love by manifesting Christ in words and deeds, singing in one voice to the glory of the Father, the Son and the Holy Spirit.
Resumo:
A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an ``end-off'' compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.
Resumo:
A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an "end-off" compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.
Resumo:
Hydrolysis of beta-lactam antibiotics by beta-lactamases (e. g., metallo-beta-lactamase, m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins and imipenem. It is shown in this paper that the thiol/thione moieties eliminated from certain cephalosporins by m beta l-mediated hydrolysis readily react with molecular iodine to produce ionic compounds having S-I bonds. While the reaction of MTT with iodine produced the corresponding disulfide, MDT and DMETT produced the charge-transfer complexes MDT-I-2 and DMETT-I-2, respectively. Addition of two equivalents of I-2 to MDT produced a novel cationic complex having an almost linear S-I+-S moiety and I-5(-) counter anion.However, this reaction appears to be highly solvent dependent. When the reaction of MDT with I2 was carried out in water, the reaction produced a monocation having I-5(-), indicating the reactivity of MDT toward I2 is very similar to that of the most commonly used antithyroid drug methimazole (MMI). In contrast to MMI, MDT and DMETT, the triazine-based compound MTDT acts as a weak donor toward iodine. (C)2010 Elsevier Ltd. All rights reserved.
Resumo:
The selenium analogue of antithyroid drug methimazole (MSeI) reacts with molecular bromine to produce two different types of novel complexes depending upon the molar ratio of MSeI to Br-2 in the reaction medium: Dicationic diselenide complex with two Br- ions as counterions is produced in the reaction of MSeI with 0.5 equiv of Br-2 (MSeI/Br-2, 1.0:0.5), whereas a stable 10-Se-3 hypervalent ``T-shaped'' complex featuring a linear Br-Se-Br moiety was produced when MSeI was treated with Br-2 in an equimolar ratio (MSeI/Br-2, 1.0:1.0). A substitution at the free N-H group in MSeI alters its reactivity toward iodine/bromine. For example, the N,N-disubstituted selones exclusively produce the corresponding 10-Se-3 hypervalent ``T-shaped'' complexes in the reaction with I-2. In the presence of the lectoperoxidase/H2O2/I- system, N,N-dimethylimidazole-2-selone produces the corresponding dicationic diselenide with two I- counterions as the final metabolite. The formation of ionic species in these reactions is confirmed by single crystal X-ray diffraction studies and in some cases by Fourier transform-Raman spectroscopic investigations.
Resumo:
The unique features of a macromolecule and water as a solvent make the issue of solvation unconventional, with questions about the static versus dynamic nature of hydration and the, physics of orientational and translational diffusion at the boundary. For proteins, the hydration shell that covers the surface is critical to the stability of its structure and function. Dynamically speaking, the residence time of water at the surface is a signature of its mobility and binding. With femtosecond time resolution it is possible to unravel the shortest residence times which are key for the description of the hydration layer, static or dynamic. In this article we review these issues guided by experimental studies, from this laboratory, of polar hydration dynamics at the surfaces of two proteins (Subtilisin Carlsberg (SC) and Monellin). The natural probe tryptophan amino acid was used for the interrogation of the dynamics, and for direct comparison we also studied the behavior in bulk water - a complete hydration in 1 ps. We develop a theoretical description of solvation and relate the theory to the experimental observations. In this - theoretical approach, we consider the dynamical equilibrium in the hydration shell, defining the rate processes for breaking and making the transient hydrogen bonds, and the effective friction in the layer which is defined by the translational and orientational motions of water molecules. The relationship between the residence time of water molecules and the observed slow component in solvation dynamics is a direct one. For the two proteins studied, we observed a "bimodal decay" for the hydration correlation function, with two primary relaxation times: ultrafast, typically 1 ps or less, and longer, typically 15-40 ps, and both are related to the residence time at the protein surface, depending on the binding energies. We end by making extensions to studies of the denatured state of the protein, random coils, and the biomimetic micelles, and conclude with our thoughts on the relevance of the dynamics of native structures to their functions.
Resumo:
The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The reaction of the benzoylhydrazone of 2-hydroxybenzaldehyde (H2L) with MoO2(acac)(2)] proceeds smoothly in refluxing ethanol to afford an orange complex MoO2L(C2H5OH)] (1). The substrate binding capacity of 1 has been demonstrated by the formation and isolation of two mononuclear MoO2L(Q)] {where Q = imidazole (2a) and 1-methylimidazole (2b)} and one dinuclear (MoO2L)(2)(Q)] {Q = 4,4'-bipyridine (3)} mixed-ligand oxomolybdenum complex. All the complexes have been characterized by elemental analysis, magnetic and spectroscopic (IR, UV-Vis and NMR) measurements. The molecular structures of all the oxomolybdenum(VI) complexes (1, 2a, 2b and 3) have been determined by X-ray crystallography. In each complex, the dianionic planar ligand is coordinated to the metal centre via one enolate oxygen, one phenolate oxygen and an azomethine nitrogen atom. The complexes have been screened for their antibacterial activity against Escherichia coli, Bacillus and Pseudomonas aeruginosa. The minimum inhibitory concentration of these complexes and their antibacterial activity indicates that compounds 2a and 2b are potential lead molecules for drug designing. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The syntheses and characterization of some new mixed-ligand nickel(II) complexes {Ni(L-1)(PPh3)] (1), Ni(L-1)(Py)] (2), Ni(L-2)(PPh3)]center dot DMSO (3), Ni(L-2)(Imz)] (4), Ni(L-3)(4-pic)] (5) and RNi(L-3))(2)(mu-4,4'-byp)]center dot 2DMSO (6)1 of three selected thiosemicarbazones the 4-(p-X-phenyl)thiosemicarbazones of salicylaldehyde) (H2L1-3) (A, Scheme 1) are described in the present study, differing in the inductive effect of the substituent X (X = F, Br and OCH3), in order to observe its influence, if any, on the redox potentials and biological activity of the complexes. All the synthesized ligands and the metal complexes were successfully characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and cyclic voltammetry. The molecular structures of four mononuclear (1-3 and 5) and one dinuclear (6) Ni(II) complex have been determined by X-ray crystallography. The complexes have been screened for their antibacterial activity against Escherichia coli and Bacillus. The minimum inhibitory concentrations of these complexes and their antibacterial activities indicate that compound 4 is the potential lead molecule for drug designing. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pore forming toxins are being classified in the protein community based on their ability of forming pores in living cell membranes. Some initial study has apparently pointed out the crystallographic pathway rather can be viewed as a structural as well as morphological changes of proteins in terms of self assembly before and during the pore formation process in surfactant medium. Being a water soluble compound, it changes its conformation and originates some pre-pore complex, which later partially goes inside the cell membrane causing a pore. The physical mechanism for this whole process is still unknown. In this study we have tried to understand these types of biological processes from physical point of view by using supported lipid bilayer as a model system.