961 resultados para 300104 Land Capability and Soil Degradation
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
Selostus: Viljelyvyöhykkeiden ja kasvumallien soveltaminen ilmastonmuutoksen tutkimisessa: Mackenzien jokialue, Kanada
Resumo:
Araucaria angustifolia (Bert.) O. Kuntze is the main component of the Mixed Ombrophilous forest and, in the State of São Paulo, it is associated with a high diversity of soil organisms, essential for the maintenance of soil quality, making the conservation of this ecosystem a major and pressing challenge. The objective of this study was to identify the physical and chemical properties that are most closely correlated with dehydrogenase enzyme activity, basal respiration and microbial biomass under native (NF) and replanted (RF) Araucaria angustifolia forests in three regions of the state of São Paulo, in winter and summer. The main differentiating factors between the areas were also determined. Each forest was represented by three true replications; at each site, from around the araucaria trees, 15 soil samples (0-20 cm) were collected to evaluate the soil physical, chemical and microbiological properties. At the same points, forest litter was sampled to assess mass and chemical properties. The following microbiological properties were evaluated: microbial biomass carbon (MBC), basal respiration (CO2-C), metabolic quotient (Q: CO2), dehydrogenase enzyme activity (DHA) as well as the physical properties (moisture, bulk density, macroporosity and total porosity), soil chemical properties [pH, organic carbon (org-C), P, Ca, K, Mg, Al, H+Al], litter dry mass, and C, N and S contents. The data were subjected to analysis of variance (TWO-WAY: ANOVA). A Canonical Discriminant Analysis (CDA) and a Canonical Correlation Analysis (CCA) were also performed. In the soil under NF, the values of K, P, soil macroporosity, and litter dry mass were higher and Q: CO2 and DHA lower, regardless of the sampling period, and DHA was lower in winter. In the RF areas, the levels of moisture, porosity and Q: CO2 were higher in both sampling periods, and DHA was higher in winter. The MBC was only higher under NF in the summer, while the litter contents of C, N and S were greater in winter. In winter, CCA showed a high correlation of DHA with CO2-C, pH and H+Al, while in the summer org-C, moisture, Mg, pH and litter C were more associated with DHA and CO2-C. The CDA indicated H+Al, available P, total porosity, litter S content, and soil moisture as the most discriminating variables between NF and RF, but moisture was the most relevant, in both seasons and CO2-C only in winter. The combined analysis of CCA and CDA showed that the contribution of the microbiological variables to a differentiation of the areas was small at both samplings, which may indicate that the period after reforestation was long enough to allow an almost complete recovery of the microbial activity.
Resumo:
Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.
Resumo:
The correlation between the species composition of pasture communities and soil properties in Plana de Vic has been studied using two multivariate methods, Correspondence Analysis (CA) for the vegetation data and Principal Component Analysis (PCA) for the soil data. To analyse the pastures, we took 144 vegetation relevés (comprising 201 species) that have been classified into 10 phytocoenological communities elsewhere. Most of these communities are almost entirely built up by perennials, ranging from xerophilous, clearly Mediterranean, to mesophilous, related to medium-European pastures, but a few occurring in shallow soils are dominated by therophytes. As for the soil properties, we analysed texture, pH, depth, bulk density, organic matter, C/N ratio and the carbonates content of 25 samples, correspondingto representative relevés of the communities studied.
Resumo:
ABSTRACT : A firm's competitive advantage can arise from internal resources as well as from an interfirm network. -This dissertation investigates the competitive advantage of a firm involved in an innovation network by integrating strategic management theory and social network theory. It develops theory and provides empirical evidence that illustrates how a networked firm enables the network value and appropriates this value in an optimal way according to its strategic purpose. The four inter-related essays in this dissertation provide a framework that sheds light on the extraction of value from an innovation network by managing and designing the network in a proactive manner. The first essay reviews research in social network theory and knowledge transfer management, and identifies the crucial factors of innovation network configuration for a firm's learning performance or innovation output. The findings suggest that network structure, network relationship, and network position all impact on a firm's performance. Although the previous literature indicates that there are disagreements about the impact of dense or spare structure, as well as strong or weak ties, case evidence from Chinese software companies reveals that dense and strong connections with partners are positively associated with firms' performance. The second essay is a theoretical essay that illustrates the limitations of social network theory for explaining the source of network value and offers a new theoretical model that applies resource-based view to network environments. It suggests that network configurations, such as network structure, network relationship and network position, can be considered important network resources. In addition, this essay introduces the concept of network capability, and suggests that four types of network capabilities play an important role in unlocking the potential value of network resources and determining the distribution of network rents between partners. This essay also highlights the contingent effects of network capability on a firm's innovation output, and explains how the different impacts of network capability depend on a firm's strategic choices. This new theoretical model has been pre-tested with a case study of China software industry, which enhances the internal validity of this theory. The third essay addresses the questions of what impact network capability has on firm innovation performance and what are the antecedent factors of network capability. This essay employs a structural equation modelling methodology that uses a sample of 211 Chinese Hi-tech firms. It develops a measurement of network capability and reveals that networked firms deal with cooperation between, and coordination with partners on different levels according to their levels of network capability. The empirical results also suggests that IT maturity, the openness of culture, management system involved, and experience with network activities are antecedents of network capabilities. Furthermore, the two-group analysis of the role of international partner(s) shows that when there is a culture and norm gap between foreign partners, a firm must mobilize more resources and effort to improve its performance with respect to its innovation network. The fourth essay addresses the way in which network capabilities influence firm innovation performance. By using hierarchical multiple regression with data from Chinese Hi-tech firms, the findings suggest that there is a significant partial mediating effect of knowledge transfer on the relationships between network capabilities and innovation performance. The findings also reveal that the impacts of network capabilities divert with the environment and strategic decision the firm has made: exploration or exploitation. Network constructing capability provides a greater positive impact on and yields more contributions to innovation performance than does network operating capability in an exploration network. Network operating capability is more important than network constructing capability for innovative firms in an exploitation network. Therefore, these findings highlight that the firm can shape the innovation network proactively for better benefits, but when it does so, it should adjust its focus and change its efforts in accordance with its innovation purposes or strategic orientation.
Resumo:
The two goals of this project stated in the Proposal were: (1) study lime diffusion in clayey soils, and (2) find the role of MgO in soil-dolomitic lime stabilization. Because of the practice significance of these goals we temporarily overstaffed this project, giving somewhat a "crash" program. As a result, proposed work was finished up early (as were the funds), and more important, some of the findings were early enough and of sufficient merit to put into field trials in the Fall of 1964. The work now being completed and the funds all being expended, this Final Report is therefore submitted before the anticipated project termination date.
Resumo:
Abstract
Resumo:
Traditionally, braided river research has considered flow, sediment transport processes and, recently, vegetation dynamics in relation to river morphodynamics. However, if considering the development of woody vegetated patches over a time scale of decades, we must consider the extent to which soil forming processes, particularly related to soil organic matter, impact the alluvial geomorphic-vegetation system. Here we quantify the soil organic matter processing (humification) that occurs on young alluvial landforms. We sampled different geomorphic units, ranging from the active river channel to established river terraces in a braided river system. For each geomorphic unit, soil pits were used to sample sediment/soil layers that were analysed in terms of grain size (<2mm) and organic matter quantity and quality (RockEval method). A principal components analysis was used to identify patterns in the dataset. Results suggest that during the succession from bare river gravels to a terrace soil, there is a transition from small amounts of external organic matter supply provided by sedimentation processes (e.g. organic matter transported in suspension and deposited on bars), to large amounts of autogenic in situ organic matter production due to plant colonisation. This appears to change the time scale and pathways of alluvial succession (bio-geomorphic succession). However, this process is complicated by: the ongoing possibility of local sedimentation, which can serve to isolate surface layers via aggradation from the exogenic supply; and erosion which tends to create fresh deposits upon which organic matter processing must re-start. The result is a complex pattern of organic matter states as well as a general lack of any clear chronosequence within the active river corridor. This state reflects the continual battle between deposition events that can isolate organic matter from the surface, erosion events that can destroy accumulating organic matter and the early ecosystem processes necessary to assist the co-evolution of soil and vegetation. A key question emerges over the extent to which the fresh organic matter deposited in the active zone is capable of significantly transforming the local geochemical environment sufficiently to accelerate soil development.
Resumo:
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.
Resumo:
The objective of this work was to evaluate the effect of biochar application on soil nitrous oxide emissions. The experiment was carried out in pots under greenhouse conditions. Four levels of ground commercial charcoal of 2 mm (biochar) were evaluated in a sandy Albaqualf (90% of sand): 0, 3, 6, and 9 Mg ha-1. All treatments received 100 kg ha-1 of N as urea. A cubic effect of biochar levels was observed on the N2O emissions. Biochar doses above 5 Mg ha-1 started to mitigate the emissions in the evaluated soil. However, lower doses promote the emissions.
Resumo:
Abstract
Resumo:
Abstract
Resumo:
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.
Resumo:
This study aimed to evaluate different proportions of organic compost and soil as a substrate for the guavira emergence and seedling formation under different protected environments, in the high Pantanal region of the state of Mato Grosso do Sul. The seeds were placed in polyethylene bags (15 x 25 centimeters) filled with four percentages of organic compost (0%, 20%, 80%, and 100% of total volume) mixed with soil. These substrates were tested in agro-nurseries covered with black screen and 50% thermo-reflecting shade cloths. The substrate with 20% soil and 80% organic compost and the black screen shade cloth promote the best performance in the seedling production.