882 resultados para 2D EXSY 13C nuclear magnetic resonance spectroscopy
Resumo:
This work report results from proton nuclear magnetic resonance (NMR), continuous-wave (CW-EPR) and pulsed electron paramagnetic resonance (P-EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing acetic acid. cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 2 x 10(-5) S/cm was obtained at room temperature for samples prepared with 33 wt% of acetic acid. Proton ((1)H) line shapes and spin-lattice relaxation times were measured as a function of temperature. The NMR results show that the proton mobility is dependent on acetic acid content in the plasticized polymer gel electrolytes. The CW-EPR spectra, which were carried out in samples doped with copper perchlorate, indicate the presence of the paramagnetic Cu(2+) ions in axially distorted sites. The P-EPR technique, known as electron spin echo envelope modulation (ESEEM), was employed to show the involvement of both, hydrogen and nitrogen atoms, in the copper complexation of the gel electrolyte. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Peat was taken from the Sergipe State, Brazil and characterized by several techniques: elemental and thermal analyses; Fourier infrared (FTIR) and solid state 13C nuclear magnetic resonance (NMR) spectroscopies; scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM) and X-ray diffractometry (XRD). Also, the Sergipe State peat samples were compared with other peat sample from later from Sao Paulo State, Brazil. The lowest O/C and E 4/E 6 ratios and differential thermal analysis (DTA) curves of the Santo Amaro (SAO) sample indicated that this sample had the highest degree of decomposition. FTIR results showed that Itabaiana (ITA) and São Paulo (SAP) samples presented more prominent peak at 1086 cm -1 attributed the presence of Si-O than SAO sample spectra. The SAO sample showed two more intense peaks at 2920 cm -1 and 2850 cm -1. These results were corroborated by 13C NMR and thermal gravimetric (TG) where the relative abundance of the alkyl-C groups was greater in the SAO sample. The X-ray diffractometry (XRD) of SAO sample is characteristic of amorphous matter however, the SAP and ITA samples revealed the large presence of quartz mineral. The scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) showed that the surface of peat samples have porous granules of organic material. The ITA and SAP peat samples are alike while SAO peat sample is richer in organic material. Only the SAO sample has truthful characteristics of peat. The results of this study showed that the samples are very different due to variable inorganic and organic material contents. ©2007 Sociedade Brasileira de Química.
Resumo:
To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score.
Resumo:
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to detect petroleum-derived spray oils (PDSOs) in citrus seedlings and trees. The NMR spectrum of the phantom containing 10% (v/v) of a nC24 agricultural mineral oil (AMO) showed the resonance of the water protons at delta = 5 ppm, while the resonance of the oil protons at delta = 1.3 to 1.7 ppm. The peak resolution and the chemical shift difference of more than 3.3 ppm between water and oil protons effectively differentiated water and the oil. Chemical shift selective imaging (CSSI) was performed to localize the AMO within the stems of Citrus trifoliata L. seedlings after the application of a 4% (v/v) spray. The chemical shift selective images of the oil were acquired by excitation at delta = 1.5 ppm by averaging over 400 transients in each phase-encoding step. Oil was mainly detected in the outer cortex of stems within 10 d of spray application; some oil was also observed in the inner vascular bundle and pith of the stems at this point. CSSI was also applied to investigate the persistence of oil deposits in sprayed mature Washington navel orange (Citrus x aurantium L.) trees in an orchard. The trees were treated with either fourteen 0.25%, fourteen 0.5%, four 1.75%, or single 7% sprays of a nC23 horticultural mineral oil (HMO) 12 to 16 months before examination of plant tissues by CSSI, and were still showing symptoms of chronic phytotoxicity largely manifested as reduced yield. The oil deposits were detected in stems of sprayed flushes and unsprayed flushes produced 4 to 5 months after the last spray was applied, suggesting a potential movement of the oil via phloem and a correlation of the persistence of oil deposit in plants and the phytotoxicity. The results demonstrate that MRI is an effective method to probe the uptake and localization of PDSOs and other xenobiotics in vivo in plants noninvasively and nondestructively.
Resumo:
Purpose: PTK787/ZK 222584 (PTK/ZK), an orally active inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, inhibits VEGF-mediated angiogenesis. The pharmacodynamic effects of PTK/ZK were evaluated by assessing changes in contrast-enhancement parameters of metastatic liver lesions using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced colorectal cancer treated in two ongoing, dose-escalating phase I studies. Patients and Methods: Twenty-six patients had DCE-MRI performed at baseline, day 2, and at the end of each 28-day cycle. Doses of oral PTK/ZK ranged from 50 to 2000 mg once daily. Tumor permeability and vascularity were assessed by calculating the bidirectional transfer constant (Ki). The percentage of baseline Ki (% of baseline Ki) at each time point was compared with pharmacokinetic and clinical end points. Results: A significant negative correlation exists between the % of baseline Ki and increase in PTK/ZK oral dose and plasma levels (P = .01 for oral dose; P = .0001 for area under the plasma concentration curve at day 2). Patients with a best response of stable disease had a significantly greater reduction in Ki at both day 2 and at the end of cycle 1 compared with progressors (mean difference in % of baseline Ki, 47%, P = .004%; and 51%, P = .006; respectively). The difference in % of baseline Ki remained statistically significant after adjusting for baseline WHO performance status. Conclusion: These findings should help to define a biologically active dose of PTK/ZK. These results suggest that DCE-MRI may be a useful biomarker for defining the pharmacological response and dose of angiogenesis inhibitiors, such as PTK/ZK, for further clinical development. © 2003 by American Society of Clinical Oncology.
Resumo:
Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.
Resumo:
Objective: To evaluate the presence of spinal inflammation with and without sacroiliac (SI) joint inflammation on magnetic resonance imaging (MRI) in patients with active nonradiographic axial spondyloarthritis (SpA), and to compare the disease characteristics of these subgroups. Methods: ABILITY-1 is a multicenter, randomized, controlled trial of adalimumab versus placebo in patients with nonradiographic axial SpA classified using the Assessment of SpondyloArthritis international Society axial SpA criteria. Baseline MRIs were centrally scored independently by 2 readers using the Spondyloarthritis Research Consortium of Canada (SPARCC) method for the SI joints and the SPARCC 6-discovertebral unit method for the spine. Positive evidence of inflammation on MRI was defined as a SPARCC score of >2 for either the SI joints or the spine. Results: Among patients with baseline SPARCC scores, 40% had an SI joint score of >2 and 52% had a spine score of >2. Forty-nine percent of patients with baseline SI joint scores of <2, and 58% of those with baseline SI joint scores of >2, had a spine score of >2. Comparison of baseline disease characteristics by baseline SI joint and spine scores showed that a greater proportion of patients in the subgroup with a baseline SPARCC score of >2 for both SI joints and spine were male, and patients with spine and SI joint scores of <2 were younger and had shorter symptom duration. SPARCC spine scores correlated with baseline symptom duration, and SI joint scores correlated negatively with the baseline Bath Ankylosing Spondylitis Disease Activity Index, but neither correlated with the baseline Ankylosing Spondylitis Disease Activity Score, total back pain, the patient's global assessment of disease activity, the Bath Ankylosing Spondylitis Functional Index, morning stiffness, nocturnal pain, or C-reactive protein level. Conclusion: Assessment by experienced readers showed that spinal inflammation on MRI might be observed in half of patients with nonradiographic axial SpA without SI joint inflammation.
Resumo:
The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the interproton distances for particular models of A and Β form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from 1Η nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.
Resumo:
The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.
Resumo:
Mechanical stress is an important external factor effecting the development and maintenance of articular cartilage. The metabolite profile of diseased cartilage has been well studied but there is limited information about the variation in metabolite profile of healthy cartilage. With the importance of load in maintaining healthy cartilage, regional differences in metabolite profile associated with differences in load may provide information on how load contributes to the maintenance of healthy cartilage. HR-MAS NMR spectroscopy allows the assessment of tissue samples without modification and was used for assessing the difference in metabolic profile between the load bearing and non-load bearing regions of the bovine articular cartilage. In this preliminary study, we examined cartilage from tibia and femur of four knee joints. Sixteen pairs of 1D-NOESY spectra were acquired. Principle component analysis (PCA) identified chemical shifts responsible for variance. SBASE (AMIX) and the Human Metabolome Database were used in conjunction with previous reported cartilage data for identifying metabolites associated with the PCA results. The major contributors to load-related differences in metabolite profile were N-acetyl groups, lactate and phosphocholine peaks. Integrals of these regions were further analysed using a Student's t-test. In load bearing cartilage regions. N-acetyl groups and phosphocholine were found at significantly higher concentration (p < 0.05 and p < 0.005, respectively) in both femur and tibia, while lactate was reduced in load bearing cartilage (p < 0.005). The results of this pilot HR-MAS NMR study demonstrate its ability to provide useful metabolite information for healthy cartilage.
Resumo:
The nuclear magnetic resonance spectra of longifolene, zerumbone, humulene, and their hydroderivatives have been studied in order to gauge the potentialities of this new tool in the field of sesquiterpenes. On the basis of present study, it has been possible to unequivocally fix the positions of the ethylene linkages in humulene and thus provide a straightforward solution of this hitherto unsolved problem.
Resumo:
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
Resumo:
Os materiais microporosos e mesoporosos são potenciais catalisadores heterogéneos. Os zeólitos e outros materiais microporosos do tipo zeolítico tradicionais, têm átomos tetracoordenados no esqueleto. Nos últimos anos, um vasto número de titanossilicatos contendo Ti(IV) hexacoordenado e Si(IV) tetracoordenado, com estruturas tridimensionais, têm sido alvo de grande interesse. Um dos objectivos desta tese foi preparar silicatos microporosos, contendo átomos metálicos com número de coordenação superior a quatro, e possuindo quer novas estruturas quer propriedades físicas e químicas interessantes. Neste contexto, foi preparado um novo ítriossilicato de sódio, AV-1, análogo do raro mineral montregianite, Na4K2Y2Si16O38·10H2O. Este material é o primeiro sólido microporoso que contem quantidades estequiométricas de sódio (e ítrio) no esqueleto. Foi, também, sintetizado um silicato de cério, AV-5, análogo estrutural do mineral montregianite com potencial aplicação em optoelectrónica. Nesta tese é, ainda, descrita a síntese e caracterização estrutural de um silicato de cálcio hidratado, AV-2, análogo do raro mineral rhodesite (K2Ca4Na2Si16O38.12H2O). Na continuação do trabalho desenvolvido em Aveiro na síntese de novos titanossilicatos surgiu o interesse de preparar novos zirconossilicatos microporosos por síntese hidrotérmica. Foram preparados dois novos materiais análogos dos minerais petarasite Na5Zr2Si3O18(Cl,OH)·2H2O (AV-3) e kostylevite, K2Si3O9·H2O (AV-8). Foram, também, obtidos análogos sintéticos dos minerais parakeldyshite e wadeite, por calcinação a alta temperatura de AV-3 e de umbite sintética. A heterogeneização de complexos organometálicos na superfície de materiais mesoporosos do tipo M41S permite associar a grande actividade catalítica e a presença de sítios activos localizados típicos dos complexos organometálicos, com a robustez e fácil separação, características dos materiais mesoporosos siliciosos. Nesta dissertação relata-se a derivatização dos materiais MCM-41 e MCM-48 através da reacção de [SiMe2{(h5-C5H4)2}]Fe e [SiMe2{(h5-C5H4)2}]TiCl2 com os grupos silanol das superfícies mesoporosas. Os materiais MCMs derivatizados com ansa-titanoceno foram testados na epoxidação de cicloocteno a 323 K na presença de hidrogenoperóxido de t-butilo. Estudou-se a heterogeneização dos sais de complexos com ligação metal-metal [Mo2(MeCN)10][BF4]4, [Mo2(m-O2CMe)2(MeCN)6][BF4]2 e [Mo2(m- O2CMe)2(dppa)2(MeCN)2][BF4]2 via imobilização nos canais do MCM-41. A imobilização dos catalisadores homogéneos na superfície do MCM-41 envolve a saída dos ligandos nitrilo lábeis, preferencialmente em posição axial, através da reacção com os grupos Si-OH da sílica. Verificou-se que a ligação Mo-Mo se mantém intacta nos produtos finais. É provável que estes materiais sejam eficientes catalisadores heterogéneos em reacções de polimerização. As técnicas de caracterização utilizadas nesta tese foram a difracção de raios-X de pós, a microscopia electrónica de varrimento, a espectroscopia de ressonância magnética nuclear do estado sólido (núcleos 13C, 23Na e 29Si), as espectroscopias de Raman e infravermelho com transformadas de Fourier, as análises termogravimétricas e as análises de adsorção de água e azoto.
Resumo:
As estirilflavonas poli-hidroxiladas são compostos heterocíclicos de natureza polifenólica que suscitam interesse devido à atividade biológica que possuem atuando, por exemplo, como antioxidantes. O desenvolvimento de novas rotas de síntese de estirilflavonas constitui um desafio e é neste contexto que se têm efetuado vários estudos sobre a aplicação de reações de acoplamento cruzado catalisadas por paládio, como a reação de Heck, na preparação deste tipo de compostos. Nesta dissertação reporta-se a síntese de (E)-8-estirilflavonas através da reação de Heck de 8-iodoflavonas com derivados de estireno com rendimentos excelentes, descrevendo-se um estudo no qual se optimizaram as condições experimentais desta reação. Adicionalmente, descrevem-se duas tentativas de desmetilação da (E)-8-[2-(4-metoxifenil)vinil]-4’,5,7-trimetoxiflavona. As 8- iodoflavonas foram preparadas com elevada regiosseletividade através da ciclização oxidativa/iodação das (E)-2’-hidroxicalconas correspondentes por aplicação do sistema de reagentes I2/DMSO. A propósito, descreve-se um estudo de ciclização oxidativa/iodação da (E)-2’-hidroxi-4,4’,6’- trimetoxicalcona, no qual se testou a aplicação do sistema de reagentes I2/DMSO na síntese de iodoflavonas em reações one-pot. As (E)-2’- hidroxicalconas foram sintetizadas através da condensação aldólica catalisada por base entre a 2’-hidroxi-4’,6’-dimetoxiacetofenona, previamente preparada, e derivados de benzaldeído. A caraterização estrutural da maioria dos compostos obtidos neste trabalho foi efetuada com base em estudos de espetroscopia de ressonância magnética nuclear (RMN), nomeadamente de 1H e 13C, e, sempre que possível, em estudos bidimensionais de correlação espetroscópica heteronuclear (HSQC e HMBC), bem como em estudos de espetrometria de massa (EM).