990 resultados para 270402 Plant Physiology
Resumo:
Annona emarginata (Schldtl.) H. Rainer (araticum-de-terra-fria) is used as a rootstock for several species of Annonaceae. It is suggested that these seeds should be sown immediately after extraction and, therefore, they could be intolerant to desiccation. There are several mechanisms involved with desiccation tolerance. Soluble sugars, for example, can accumulate and act as osmoprotectants for the membrane system during desiccation. The aim of this study is to assess desiccation tolerance in A. emarginata seeds. In addition, we examined the soluble sugars involved in desiccation tolerance. Finally, we determined the effect of gibberellic acid (GA4+7) and N-(phenylmethyl)-aminopurine in promoting the germination of seeds with different water contents. The experiment consisted of a randomized 4×5 factorial design (desiccation levels × concentration of growth regulators). After drying, seeds containing 31 (control), 19, 12 and 5% water were incubated in different concentrations of GA4+7 N-(phenylmethyl)-aminopurine (0, 250, 500, 750 and 1000 mg L-1) for 60 hours. The experiment was conducted in a germination chamber with alternating temperature and photoperiod of 20oC for 18 hours of darkness and 30oC for 6 hours of light. We analyzed electrical conductivity, germination rate, mean germination time, germination speed, frequency and uniformity of germination, percentage of dormant seeds and soluble sugar profile in intact seeds through high-performance liquid chromatography (HPLC). The data were subjected to analysis of variance, and the means were compared using Tukey's test at a threshold of p<0.05. The results showed that seeds of A. emarginata appears to be desiccation tolerant and, also, that sucrose increases when seed water content is reduced to values as low as 12%, exogenous GA4+7+N-(phenylmethyl)-aminopurine improves its germinability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen (''pathogens'' hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.
Resumo:
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress
Resumo:
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Resumo:
1913
Resumo:
Funded by OPTIMA Biotechnology & Biological Sciences Research Council (BBSRC) Institute Strategic Programme Energy Grasses & Biorefining. Grant Number: BBS/E/W/10963A01 Defra GIANT LINK
Resumo:
"This edition of the bibliography is a reprint of one issued in May 1956 by the University of Massachusetts, in cooperation with the Forest Service."
Resumo:
Bibliography: leaves 110-117.
Resumo:
Reference books: p. 413-414.
Resumo:
Includes bibliographical references (p. 145) and index.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Physiological botany; I. Outlines of the histology of phaenogamous plants; II. Vegetable physiology.
Resumo:
Mode of access: Internet.