995 resultados para 216
Resumo:
The aim of this study was to validate the Children’s Eating Behaviour Questionnaire (CEBQ) in three ethnically and culturally diverse samples of mothers in Australia. Confirmatory factor analysis utilising structural equation modelling examined whether the established 8-factor model of the CEBQ was supported in our three populations: (i) a community sample of first-time mothers allocated to the control group of the NOURISH trial (mean child age = 24 months [SD = 1]; N = 244); (ii) a sample of immigrant Indian mothers of children aged 1–5 years (mean age = 34 months [SD = 14]; N = 203), and (iii) a sample of immigrant Chinese mothers of children aged 1–4 years (mean age = 36 months [SD = 14]; N = 216). The original 8-factor model provided an acceptable fit to the data in the NOURISH sample with minor post hoc re-specifications (two error covariances on Satiety Responsiveness and an item-factor covariance to account for a cross-loading of an item (Fussiness) on Satiety Responsiveness). The re-specified model showed reasonable fit in both the Indian and Chinese samples. Cronbach’s α estimates ranged from .73 to .91 in the Australian sample and .61–.88 in the immigrant samples. This study supports the appropriateness of the CEBQ in the multicultural Australian context.
Resumo:
BACKGROUND Experimental and epidemiologic evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. METHODS To investigate this hypothesis, a two-stage study was carried out to evaluate single-nucleotide polymorphisms (SNP) in inflammatory pathway genes in association with endometrial cancer risk. In stage I, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage I SNPs significantly associated with endometrial cancer (P < 0.05) indicated that the majority of associations could be linked to one of 24 distinct loci. One SNP from each of the 24 loci was then selected for follow-up genotyping. Of these, 21 SNPs were successfully designed and genotyped in stage II, which consisted of 10 additional studies including 6,604 endometrial cancer cases and 8,511 controls. RESULTS Five of the 21 SNPs had significant allelic odds ratios (ORs) and 95% confidence intervals (CI) as follows: FABP1, 0.92 (0.85-0.99); CXCL3, 1.16 (1.05-1.29); IL6, 1.08 (1.00-1.17); MSR1, 0.90 (0.82-0.98); and MMP9, 0.91 (0.87-0.97). Two of these polymorphisms were independently significant in the replication sample (rs352038 in CXCL3 and rs3918249 in MMP9). The association for the MMP9 polymorphism remained significant after Bonferroni correction and showed a significant association with endometrial cancer in both Asian- and European-ancestry samples. CONCLUSIONS These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact statement: This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis.
Resumo:
The notion of identity-based IB cryptography was proposed by Shamir [177] as a specialization of public key PK cryptography which dispensed with the need for cumbersome directories, certificates, and revocation lists.
Resumo:
Information technology (IT) plays a critical role of enabler of activities that improve the performance of business processes. This enabling role of IT resources means continuous investment in IT is a strategic necessity. It is established that organizations’ IT-related capabilities leverage the enabling potential of IT resources. Today’s turbulent and challenging business environment requires organizations to do more from their existing and newly acquired IT resources. To achieve this, organizations need to discover ways or establish environments to nourish their existing IT-related capabilities, and develop new IT-related capabilities. We suggest one such environment, a dynamic IT-learning environment that could contribute to nourishing existing IT-related capabilities, and developing new IT-related capabilities. This environment is a product of coordination of four organizational factors that relate to the ways in which IT-related knowledge is applied to business processes, the accompanying reward structures, and ways in which the IT-related learning and knowledge is shared within the organization. Using 216 field survey responses, this paper shows that two IT-related capabilities of top management commitment to IT initiatives, and shared organizational knowledge between the IT and business unit managers has a stronger positive influence on business process performance in the presence of this dynamic IT-learning environment. The study also shows that a marginal IT-related capability, technical IT skills, has a positive and significant influence on business process performance in the presence of this environment. These outcomes imply that organizations’ internal environments could contribute to the management of their IT-related capabilities.
Resumo:
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.
Resumo:
Recurrent congestion caused by high commuter traffic is an irritation to motorway users. Ramp metering (RM) is the most effective motorway control means (M Papageorgiou & Kotsialos, 2002) for significantly reducing motorway congestion. However, given field constraints (e.g. limited ramp space and maximum ramp waiting time), RM cannot eliminate recurrent congestion during the increased long peak hours. This paper, therefore, focuses on rapid congestion recovery to further improve RM systems: that is, to quickly clear congestion in recovery periods. The feasibility of using RM for recovery is analyzed, and a zone recovery strategy (ZRS) for RM is proposed. Note that this study assumes no incident and demand management involved, i.e. no re-routing behavior and strategy considered. This strategy is modeled, calibrated and tested in the northbound model of the Pacific Motorway, Brisbane, Australia in a micro-simulation environment for recurrent congestion scenario, and evaluation results have justified its effectiveness.
Resumo:
Enterprise Resource Planning (ERP) software is the dominant strategic platform for supporting enterprise-wide business processes. However, it has been criticised for being inflexible and not meeting specific organisation and industry requirements. An alternative, Best of Breed (BoB), integrates components of standard package and/or custom software. The objective is to develop enterprise systems that are more closely aligned with the business processes of an organisation. A case study of a BoB implementation facilitates a comparative analysis of the issues associated with this strategy and the single vendor ERP alternative. The paper illustrates the differences in complexity of implementation, levels of functionality, business process alignment potential and associated maintenance.
Resumo:
Purpose: The paper aims to investigate urban knowledge precincts from the angle of urban planning and place branding. Scope: The paper focuses on urban knowledge precinct development experiences of Brisbane, Australia. Method: The paper uses literature review, policy and content analyses and field observation methods to explore Brisbane’s urban knowledge precincts. Results: The paper reveals insights from Brisbane’s urban knowledge precincts development journey. Recommendations: The paper suggests further research on the topic of branding and planning urban knowledge precincts. Conclusions: The paper reveals that urban knowledge precincts are the nexus of knowledge-based urban development and Brisbane’s precincts potentially provide a competitive edge to the city in the global knowledge economy era.
Resumo:
Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24 h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24 h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.
Resumo:
The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm−1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm−1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.
Resumo:
Introduction Risk factor analyses for nosocomial infections (NIs) are complex. First, due to competing events for NI, the association between risk factors of NI as measured using hazard rates may not coincide with the association using cumulative probability (risk). Second, patients from the same intensive care unit (ICU) who share the same environmental exposure are likely to be more similar with regard to risk factors predisposing to a NI than patients from different ICUs. We aimed to develop an analytical approach to account for both features and to use it to evaluate associations between patient- and ICU-level characteristics with both rates of NI and competing risks and with the cumulative probability of infection. Methods We considered a multicenter database of 159 intensive care units containing 109,216 admissions (813,739 admission-days) from the Spanish HELICS-ENVIN ICU network. We analyzed the data using two models: an etiologic model (rate based) and a predictive model (risk based). In both models, random effects (shared frailties) were introduced to assess heterogeneity. Death and discharge without NI are treated as competing events for NI. Results There was a large heterogeneity across ICUs in NI hazard rates, which remained after accounting for multilevel risk factors, meaning that there are remaining unobserved ICU-specific factors that influence NI occurrence. Heterogeneity across ICUs in terms of cumulative probability of NI was even more pronounced. Several risk factors had markedly different associations in the rate-based and risk-based models. For some, the associations differed in magnitude. For example, high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were associated with modest increases in the rate of nosocomial bacteremia, but large increases in the risk. Others differed in sign, for example respiratory vs cardiovascular diagnostic categories were associated with a reduced rate of nosocomial bacteremia, but an increased risk. Conclusions A combination of competing risks and multilevel models is required to understand direct and indirect risk factors for NI and distinguish patient-level from ICU-level factors.
Resumo:
Kangen Band, as an example of reclaiming of the derisive term kampungan. In it, I argue that this reclaiming represents an interesting case of genre manipulation, and consider what this can reveal about how Indonesian pop genres are constituted, what they ‘are’ and what they ‘do’. In so doing, I seek to rework existing scholarship relating to Indonesian pop genres and modernity, as well as interrogate some broader theories of genre. In this essay, I extend the argument that Indonesian pop genres are not purely technical categories, they touch on myths of class and nation (Wallach 2008; Weintraub 2010; Yampolsky 1989. As we shall see, in the New Order period, pop music genres reached out to these myths by positioning themselves variously vis-à-vis the capital city, Jakarta. Such positioning, achieved through use of the terms gedongan (a term that strives to infer refinement by stressing the non-masses’ central position in the urban environment) and kampungan (a term that strives to enforce subalterns’ marginal position in relation to the metropolis, see also the previous contribution by Weintraub), continues to haunt the constitution of genre in the post-New Order period, but in novel ways. These novel ways, I argue, may be seen to result from industrial transformation and new systems of knowledge production.
Resumo:
Introduction The Global Burden of Disease Study 2010 estimated the worldwide health burden of 291 diseases and injuries and 67 risk factors by calculating disability-adjusted life years (DALYs). Osteoporosis was not considered as a disease, and bone mineral density (BMD) was analysed as a risk factor for fractures, which formed part of the health burden due to falls. Objectives To calculate (1) the global distribution of BMD, (2) its population attributable fraction (PAF) for fractures and subsequently for falls, and (3) the number of DALYs due to BMD. Methods A systematic review was performed seeking population-based studies in which BMD was measured by dual-energy X-ray absorptiometry at the femoral neck in people aged 50 years and over. Age- and sex-specific mean ± SD BMD values (g/cm2) were extracted from eligible studies. Comparative risk assessment methodology was used to calculate PAFs of BMD for fractures. The theoretical minimum risk exposure distribution was estimated as the age- and sex-specific 90th centile from the Third National Health and Nutrition Examination Survey (NHANES III). Relative risks of fractures were obtained from a previous meta-analysis. Hospital data were used to calculate the fraction of the health burden of falls that was due to fractures. Results Global deaths and DALYs attributable to low BMD increased from 103 000 and 3 125 000 in 1990 to 188 000 and 5 216 000 in 2010, respectively. The percentage of low BMD in the total global burden almost doubled from 1990 (0.12%) to 2010 (0.21%). Around one-third of falls-related deaths were attributable to low BMD. Conclusions Low BMD is responsible for a growing global health burden, only partially representative of the real burden of osteoporosis.