977 resultados para 21-206
Resumo:
对有限力程小液滴模型计算的质子数Z=101—130超重核同位素链核的基态性质进行了系统的分析,通过对这些同位素链中处于裂变稳定线上核的平均结合能、四极形变、单质子分离能、双质子分离能和α衰变能等性质的系统研究,显示了质子数Z=108,114,126和中子数N=162,180,196时壳幻数的存在,同时可以看到Z=127之后超重核的基态性质还需要进一步研究.
Resumo:
概述了辐射固化新技术的发展过程 ,简述了紫外光固化和电子束固化机理、所需设备和涂层的原材料 .与常规固化方法比较 ,辐射固化具有低能耗、高效率和无污染的优点 ,是面向 2 1世纪的绿色工业的新技术 .
Resumo:
利用能量为60-80MeV的~(12)C束流,通过~197An(~(12)C,3n)~206At反应研究了~206At核的高自旋能级结构.用7台BGO(AC)HPGe探测器和一台用于探测低能γ射线的平面型HPGe探测器进行了γ射线的激发函数、γ-γ-t符合及γ射线的角分布测量.基于这些测量,首次建立了包括25条γ跃迁的~206At高自旋能级纲图.确定了一个半寿命为(908±400)ns、自旋和宇称为10的同质异能态.基于较重的双奇核~(208,210 )At能级结构的系统性,对~(206)At的10~-同质异能态进行了讨论.
Resumo:
The first spectroscopic study for the beta decay of N-21 is carried out based on beta-n, beta-gamma, and beta-n-gamma coincidence measurements. The neutron-rich N-21 nuclei are produced by the fragmentation of the E/A=68.8 MeV Mg-26 primary beam on a thick Be-9 target and are implanted into a thin plastic scintillator that also plays the role of beta detector. The time of flight of the emitted neutrons following the beta decay are measured by the surrounding neutron sphere and neutron wall arrays. In addition, four clover germanium detectors are used to detect the beta-delayed gamma rays. Thirteen new beta-delayed neutron groups are observed with a total branching ratio of 90.5 +/- 4.2%. The half-life for the beta decay of N-21 is determined to be 82.9 +/- 7.5 ms. The level scheme of O-21 is deduced up to about 9 MeV excitation energy. The experimental results for the beta decay of N-21 are compared to the shell-model calculations.
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p. A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦ , 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.