993 resultados para 162-987E


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentological and faunal records from the transitional period marking the onset of widespread northern hemisphere glaciation have been investigated at Ocean Drilling Program Site 984. The late Pliocene interglacial sediments of the northeast Atlantic are carbonate rich and show evidence of vigorous bottom water circulation at intermediate water depths. Contrasting this, the late Pliocene glacial sediments are characterised by carbonate dissolution and slower bottom current velocities. Weak or "leaky" Norwegian Sea overflows, undersaturated with respect to carbonate, influenced this region during the late Pliocene glacials. The early Pleistocene pattern of intermediate water circulation appears to have changed radically in the northeast Atlantic. At this time, interglacial carbonate values and inferred bottom current velocities are low. This suggests slow-flowing, undersaturated Norwegian Sea water bathing the site. The overflow increased during the early Pleistocene interglacials as the exchange between the Atlantic and Norwegian-Greenland Seas improved. The most significant feature of the early Pleistocene glacials is the increase in inferred bottom current velocity. These changes reflect a switch in deep North Atlantic convection to shallower depths during glacial periods, possibly in a manner similar to the increasing contribution of glacial intermediate water to the North Atlantic during the late Pleistocene glacials. Our results suggest that the late Pleistocene climate variability of the North Atlantic is a pervasive feature of the late Pliocene-early Pleistocene record.