973 resultados para 130-804


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model which describes oxygen isotope exchange during burial and recrystallization of deep-sea carbonate is used to obtain information on how sea surface temperatures have varied in the past by correcting measured d18O values of bulk carbonate for diagenetic overprinting. Comparison of bulk carbonate and planktonic foraminiferal d18O records from ODP site 677A indicates that the oxygen isotopic composition of bulk carbonate does reflect changes in sea surface temperature and d18O. At ODP Site 690, we calculate that diagenetic effects are small, and that both bulk carbonate and planktonic foraminiferal d18O records accurately reflect Paleogene warming of high latitude surface oceans, biased from diagenesis by no more than 1°C. The same is likely to be true for other high latitude sites where sedimentation rates are low. At DSDP sites 516 and 525, the effects of diagenesis are more significant. Measured d18O values of Eocene bulk carbonates are more than 2? lower at deeply buried site 516 than at site 525, consistent with the model prediction that the effects of diagenesis should be proportional to sedimentation rate. Model-corrections reconcile the differences in the data between the two sites; the resulting paleotemperature reconstruction indicates a 4°C cooling of mid-latitude surface oceans since the Eocene. At low latitudes, the contrast in temperature between the ocean surface and bottom makes the carbonate d180 values particularly sensitive to diagenetic effects; most of the observed variations in measured d18O values are accounted for by diagenetic effects rather than by sea surface temperature variations. We show that the data are consistent with constant equatorial sea surface temperatures through most of the Cenozoic, with the possible exception of the early Eocene, when slightly higher temperatures are indicated. We suggest that the lower equatorial sea surface temperatures for the Eocene and Oligocene reported in other oxygen isotope studies are artifacts of diagenetic recrystallization, and that it is impossible to reconstruct accurately equatorial sea surface temperatures without explicitly accounting for diagenetic overprinting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined the helium abundance and isotopic composition of seafloor carbonate sediments from the flanks of the Ontong Java Plateau, western equatorial Pacific Ocean (ODP Site 806). These results provide a two million year record of the burial flux of extraterrestrial 3He, which we believe is a proxy for the terrestrial accretion rate of interplanetary dust particles. The 3He burial flux prior to ~700 ka was relatively low, ~0.5 pcc/cm**2/kyr, but from 700 ka to the present, the burial flux gradually increased to a value of ~1.0 pcc/cm**2/kyr. 100 kyr periodicity in the 3He burial flux is apparent over the last 700 kyr and correlates with the oxygen isotope record of global climate, with high 3He burial fluxes associated with interglacial periods. This periodicity and phase are consistent with previous 3He measurements in North Atlantic sediments. Although 100 kyr periodicity in 3He burial flux is in agreement with recent predictions of the accretion rate of interplanetary dust based on a model of the orbital evolution of asteroidal debris, the measurements and predictions differ by one half cycle in phase. Nevertheless, our observations suggest the terrestrial accretion rate of interplanetary dust is controlled by orbital eccentricity and/or inclination relative to the solar-system invariable plane. Such control is a necessary but not sufficient condition for the hypothesis of that variations in extraterrestrial dust accretion modulates terrestrial climate with a 100 kyr period. We also identify several brief (<25 kyr) intervals of strongly enhanced 3He burial, possibly related to random and transient fluctuations in the accretion rate of asteroidal or cometary dust particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light greenish gray and pale purple color bands are common in the ooze and chalk of the Ontong Java Plateau. Analyses of Pleistocene and Pliocene ooze samples that contain abundant bands indicate that the purple bands are colored by finely disseminated iron sulfide, whereas the green bands are colored by finely disseminated Fe- and Al-bearing silicates (probably clays). No local contrasts in the total organic carbon contents, carbon and oxygen isotopic compositions, and grain sizes were found. Band abundances, counted from core photographs of all Leg 130 holes, can be correlated from hole to hole on the basis of age rather than depth. The temporal distribution of these color bands is also comparable with that of the green bands described from the Lord Howe Rise, which were previously interpreted as products of altered volcanic glass. This may indicate that the green and purple bands on the Ontong Java Plateau originate from the early alteration of volcanic ash. The crosscutting relationships between the green and purple bands and original structures in the host sediment indicate that the bands have been locally altered by redox conditions in the sediments after the bands were formed.