991 resultados para 1:504
Resumo:
The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m**2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
Resumo:
Drilling durin Deep Sea Drilling Project Legs 68, 69, and 70 on the southern limb of the Costa Rica Rift was used to study geothermal processes in the ocean crust. Two areas were drilled. One was a geothermally hot site on 6.2-m.y.-old crust, where topography is smooth, heat flow is close to that predicted by conductive cooling of the lithosphere (200 mWm**-2), and hydrothermal circulation may be sealed within the crust. The other was on 3.9-m.y.-old crust, where rough topography is associated with low heat flow (15 to 50 mWm**-2) and possible open convection of sea water. At both sites, about 250 m of siliceous-calcareous sediments overlies igneous basement. In the hot area, it blankets the topography, whereas in the cold area, basement outcrops still occur. Operations included numerous down-hole experiments in both areas and hydraulic piston coring of a 230-m sediment section in the hot area. Diagenesis of the sediments appears closely related to temperature. At the hot site, chert was found near basement, and the chemistry of pore fluids, sampled from both sediments and basement, is strongly influenced by reactions within the basement. Strong lateral gradients in the composition of pore fluids occur in the sediments. At the cold site, no chert was found, and bacterial processes within the sediment dominated the chemistry of the pore fluids. Basaltic basement in both areas consists mainly of pillow lavas and thin flows, with occasional more massive units. The basalt is relatively magnesian. The degree of alteration is very small in the cold area, but much more extensive in the hot area. Ease of drilling also shows a strong contrast. Basement penetration reached 562 m in the hot area and was halted because of lack of time; at the cold site, 43 m of basement was cored only with difficulty. The most intensive in-hole experiments were conducted in the hot area. Successful runs with the borehole televiewer allowed basement lithology to be determined and showed the presence of more and less fractured zones. Pulse tests using a single borehole packer gave values of basement permeability of about 2 to 40 millidarcies. Numerous temperature logs established a broadly conductive in situ temperature gradient, with temperatures reaching 120°C at 562 m into the basement. However, anomalously low temperatures in the upper part of the hole, which persisted after drilling disturbance had decayed away, showed that cold ocean water was flowing down the hole and into the basement at about 90 m below the base of the sediments, at rates of about 80 to 100 m/hr. The packer records indicate a pressure at this depth of 10 bars below hydrostatic.
Resumo:
The mass accumulation rates (MARs) of aeolian dust in the ocean basins provide an important record of climate in the continental source regions of atmospheric dust and of the prevailing wind patterns responsible for dust transport in the geologic past. The incorporation of other terrigenous components such as volcanic ashes in seafloor sediments, however, often obscures the aeolian dust record. We describe a new approach which uses the delivery rate of crustal 4He to seafloor sediments as a proxy for the mass accumulation rate of old continental dust which is unaffected by the addition of other terrigenous components. We have determined the flux of crustal 4He delivered to the seafloor of the Ontong Java Plateau (OJP) in the western equatorial Pacific over the last 1.9 Myrs. Crustal 4He fluxes vary between 7.7 and 30 ncc/cm**2/kyr and show excellent correlation with global climate as recorded by oxygen isotopes, with high crustal 4He fluxes associated with glacial periods over the entire interval studied. Furthermore, the onset of strong 100 kyr glacial-interglacial climate cycling is clearly seen in the 4He flux record about 700 kyrs ago. These data record variations in the supply of Asian dust in response to climate driven changes in the aridity of the Asian dust sources, consistent with earlier work on Asian dust flux to the northern Pacific Ocean. However, in contrast to previous studies of sites in the central and eastern equatorial Pacific Ocean, there is no evidence that the Inter Tropical Convergence Zone (an effective rainfall barrier to the southward transport of northern hemisphere dust across the equator in the central and eastern Pacific) has influenced the delivery of Asian dust to the OJP. The most likely carrier phase for crustal helium in these sediments is zircon, which can reasonably account for all the 4He observed in the samples. As a first order estimate, these results suggest that the mass accumulation rate of Asian dust on the OJP over the last 1.9 Myrs varied from about 4 to 15 mg/ cm**2/kyr. In contrast, previous studies show that over the same interval the total MAR of terrigenous dust (i.e. Asian dust plus local volcanics) on OJP varied between about 34 and 90 mg/ cm**2/kyr.