950 resultados para 0.5-1.0 mm diameter, 1 specimen


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat transfer between plasma and a solid occurs mostly due the radiation and the collision of the particles on the material surface, heating the material from the surface to the bulk. The thermal gradient inside the sample depends of the rate of particles collisions and thermal conductivity of the solid. In order to study that effect, samples of AISI M35 steel, with 9,5 mm X 3,0 mm (diameter X thickness) were quenched in resistive furnace and tempereds in plasma using the plane configuration and hollow cathode, working with pressures of 4 and 10 mbar respectively. Analyzing the samples microstructure and measuring the hardness along the transversal profile, it was possible to associate the tempered temperature evaluating indirectly the thermal profile. This relation was obtained by microstructural analyzes and through the hardness curve x tempered sample temperature in resistive furnace, using temperatures of 500, 550, 600, 650 and 700°C. The microstructural characterization of the samples was obtained by the scanning electron microscopy, optic microscopy and X-ray diffraction. It was verified that all samples treated in plasma presented a superficial layer, denominated affected shelling zone, wich was not present in the samples treated in resistive furnace. Moreover, the samples that presented larger thermal gradient were treated in hollow cathode with pressure of 4 mbar

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE) prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37 degrees C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To analyze and compare the relationship between anterior and posterior corneal shape evaluated by a tomographic system combining the Scheimpflug photography and Placido-disc in keratoconus and normal healthy eyes, as well as to evaluate its potential diagnostic value. Methods Comparative case series including a sample of 161 eyes of 161 subjects with ages ranging from 7 to 66 years and divided into two groups: normal group including 100 healthy eyes of 100 subjects, and keratoconus group including 61 keratoconus eyes of 61 patients. All eyes received a comprehensive ophthalmologic examination including an anterior segment analysis with the Sirius system (CSO). Antero-posterior ratios for corneal curvature (k ratio) and shape factor (p ratio) were calculated. Logistic regression analysis was used to evaluate if some antero–posterior ratios combined with other clinical parameters were predictors of the presence of keratoconus. Results No statistically significant differences between groups were found in the antero–posterior k ratios for 3-, 5- and 7-mm diameter corneal areas (p ≥ 0.09). The antero–posterior p ratio for 4.5- and 8-mm diameter corneal areas was significantly higher in the normal group than in the keratoconus group (p < 0.01). The k ratio for 3, 5, and 7 mm was significantly higher in the keratoconus grade IV subgroup than in the normal group (p < 0.01). Furthermore, significant differences were found in the p ratio between the normal group and the keratoconus grade II subgroup (p ≤ 0.01). Finally, the logistic regression analysis identified as significant independent predictors of the presence of keratoconus (p < 0.01) the 8-mm anterior shape factor, the anterior chamber depth, and the minimal corneal thickness. Conclusions The antero-posterior k and p ratios are parameters with poor prediction ability for keratoconus, in spite of the trend to the presence of more prolate posterior corneal surfaces compared to the anterior in keratoconus eyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer matrix composites offer advantages for many applications due their combination of properties, which includes low density, high specific strength and modulus of elasticity and corrosion resistance. However, the application of non-destructive techniques using magnetic sensors for the evaluation these materials is not possible since the materials are non-magnetizable. Ferrites are materials with excellent magnetic properties, chemical stability and corrosion resistance. Due to these properties, these materials are promising for the development of polymer composites with magnetic properties. In this work, glass fiber / epoxy circular plates were produced with 10 wt% of cobalt or barium ferrite particles. The cobalt ferrite was synthesized by the Pechini method. The commercial barium ferrite was subjected to a milling process to study the effect of particle size on the magnetic properties of the material. The characterization of the ferrites was carried out by x-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM) and vibrating sample magnetometry (VSM). Circular notches of 1, 5 and 10 mm diameter were introduced in the composite plates using a drill bit for the non-destructive evaluation by the technique of magnetic flux leakage (MFL). The results indicated that the magnetic signals measured in plates with barium ferrite without milling and cobalt ferrite showed good correlation with the presence of notches. The milling process for 12 h and 20 h did not contribute to improve the identification of smaller size notches (1 mm). However, the smaller particle size produced smoother magnetic curves, with fewer discontinuities and improved signal-to-noise ratio. In summary, the results suggest that the proposed approach has great potential for the detection of damage in polymer composites structures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat transfer between plasma and a solid occurs mostly due the radiation and the collision of the particles on the material surface, heating the material from the surface to the bulk. The thermal gradient inside the sample depends of the rate of particles collisions and thermal conductivity of the solid. In order to study that effect, samples of AISI M35 steel, with 9,5 mm X 3,0 mm (diameter X thickness) were quenched in resistive furnace and tempereds in plasma using the plane configuration and hollow cathode, working with pressures of 4 and 10 mbar respectively. Analyzing the samples microstructure and measuring the hardness along the transversal profile, it was possible to associate the tempered temperature evaluating indirectly the thermal profile. This relation was obtained by microstructural analyzes and through the hardness curve x tempered sample temperature in resistive furnace, using temperatures of 500, 550, 600, 650 and 700°C. The microstructural characterization of the samples was obtained by the scanning electron microscopy, optic microscopy and X-ray diffraction. It was verified that all samples treated in plasma presented a superficial layer, denominated affected shelling zone, wich was not present in the samples treated in resistive furnace. Moreover, the samples that presented larger thermal gradient were treated in hollow cathode with pressure of 4 mbar

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collection : La France dramatique au XIXe siècle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are potential 3D alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø = 3.5 mm), cannulated TA (CTA) and cannulated SS (CSS)(Ø = 4.0 mm, Ø empty core = 2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0 mm, 2.6 mm, 1.6 mm and 2.0 mm; from 1.5T MRI they were 3.7 mm, 10.9 mm, 2.9 mm, and 9 mm; and 3T MRI they were 4.4 mm, 15.3 mm, 3.8 mm, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P < 0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P = 0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in operative techniques should be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the liquid-helium-temperature (5 K) electron paramagnetic resonance (EPR) spectra of Cr3+ ions in the nanoparticles of SnO2 synthesized at 600 degrees C with concentrations of 0%, 0.1%, 0.5%, 1%, 1.5%, 2.0%, 2.5%, 3.0%, 5.0%, and 10%. Each spectrum may be simulated as overlap of spectra due to four magnetically inequivalent Cr3+ centers characterized by different values of the spin-Hamiltonian parameters. Three of these centers belong to Cr3+ ions in orthorhombic sites, situated near oxygen vacancies, characterized by very large zero-field splitting parameters D and E, presumably due to the presence of nanoparticles in the samples. The fourth EPR spectrum belongs to the Cr3+ ions situated at sites with tetragonal symmetry, substituting for the Sn4+ ion, characterized by a very small value of D. In addition, there appears a ferromagnetic resonance line due to oxygen defects for samples with Cr3+ concentrations of <= 2.5%. Further, in samples with Cr3+ concentrations of >2.5%, there appears an intense and wide EPR line due to the interactions among the Cr3+ ions in the clusters formed due to rather excessive doping; the intensity and width of this line increase with increasing concentration. The Cr3+ EPR spectra observed in these nanopowders very different from those in bulk SnO2 crystals.