1000 resultados para Énergie de surface
Resumo:
Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.
Resumo:
The role of plasma proteins on the cellular uptake of lipophilic substrates has perplexed investigators for many years. We tested the hypothesis that an ionic interaction between the protein-ligand complex and hepatocyte surface may be responsible for supplying more ligand to the cell for uptake. The surface-charged groups on albumin were modified to yield proteins having a range of isoelectric points (ALB, ALBs, ALBm, ALBe had values of 4.8-5.0, 4.5-4.7, 3.0-3.5, 8.4-8.6, respectively). [H-3]-Palmitate uptake studies were performed with adult rat hepatocyte suspensions using similar unbound ligand fractions in the presence of the different binding proteins. Mass spectrometry, isoelectric focusing (pI), and heptane : water partitioning were used to determine protein molecular weight, pI, and protein-palmitate equilibrium binding constant, respectively. Hepatocyte [H-3]-palmitate clearance in the presence of ALBs and ALBm were significantly lower (p < 0.05) than ALB, whereas [H-3]-palmitate clearance in the presence of ALBe was significantly higher (p < 0.05) than ALB. The data were consistent with the notion that ionic interactions between extracellular protein-ligand complexes and the hepatocyte surface facilitate the uptake of long-chain fatty acids.
Resumo:
Drosophila slit is a secreted protein involved in midline patterning. Three vertebrate orthologs of the fly slit gene, Slit1, 2, and 3, have been isolated. Each displays overlapping, but distinct, patterns of expression in the developing vertebrate central nervous system, implying conservation of function. However, vertebrate Slit genes are also expressed in nonneuronal tissues where their cellular locations and functions are unknown. In this study, we characterized the cellular distribution and processing of mammalian Slit3 gene product, the least evolutionarily conserved of the vertebrate Slit genes, in kidney epithelial cells, using both cellular fractionation and immunolabeling. Slit3, but not Slit2, was predominantly localized within the mitochondria. This localization was confirmed using immunoelectron microscopy in cell lines and in mouse kidney proximal tubule cells. In confluent epithelial monolayers, Slit3 was also transported to the cell surface. However, we found no evidence of Slit3 proteolytic processing similar to that seen for Slit2. We demonstrated that Slit3 contains an NH2-terminal mitochondrial localization signal that can direct a reporter green fluorescent protein to the mitochondria. The equivalent region from Slit1 cannot elicit mitochondrial targeting. We conclude that Slit3 protein is targeted to and localized at two distinct sites within epithelial cells: the mitochondria, and then, in more confluent cells, the cell surface. Targeting to both locations is driven by specific NH2-terminal sequences. This is the first examination of Slit protein localization in nonneuronal cells, and this study implies that Slit3 has potentially unique functions not shared by other Slit proteins.
Resumo:
Some paramagnetic superoxide ions detectable by electron paramagnetic resonance (EPR) can be generated on Au/ZnO catalyst by oxygen adsorption at room temperature as well as at 553 K. In both the cases, the O-2(-) ions are present on the catalyst surface. The disappearance of the O-2(-) signal by the introduction of carbon monoxide over the catalyst surface implies that the O-2(-) ions are either the active oxygen species or the precursors of the active oxygen species. The CO3- species produced are also detected by EPR. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127-128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents.
Resumo:
Adsorption and diffusion in a porous media were studied theoretically and experimentally with a differential transient permeation method. The porous medium is allowed to equilibrate at some specified loading, and then the time trajectory of the permeation process is followed after a small difference between the pressures at the end faces of the porous medium is introduced at time t = 0 +. Such a trajectory us. time would contain adsorption and diffusion characteristics of the system. By studying this for various surface loadings, pore and surface diffusions can be fully characterized. Mathematical modeling of transient permeation is detailed for pure gases or vapors diffusion and adsorption in porous media. Effects of nonlinearity of adsorption isotherm, pressure, temperature and heat effects were considered in the model. Experimental data of diffusion and adsorption of propane, n-butane and n-hexane in activated carbon at different temperatures and loadings show the potential of this method as a useful tool to study adsorption kinetics in porous media. Validity of the model is best tested against the transient data where the kinetics curves exhibit sigmoidal shape, which is a result of the diffusion and adsorption rate during the initial stage of permeation.
Resumo:
This review provides an overview of surface diffusion and capillary condensate flow in porous media. Emphasis has been placed on the distinction between purely surface diffusion, multilayer surface diffusion, and, capillary condensate flow.
Resumo:
This paper addresses the current status of the various diffusion theories for surface diffusion in the literature. The inadequacy of these models to explain the surface diffusion of many hydrocarbons in microporous activated carbon is shown in this paper. They all can explain the increase of the surface diffusivity (D-mu) with loading, but cannot explain the increase of the surface permeability (D(mu)partial derivativeC(mu)/partial derivativeP) with loading as observed in our data of diffusion of hydrocarbons in activated carbon, even when the surface heterogeneity is accounted for in those models. The explanation for their failure was presented, and we have put forward a theory to explain the increase of surface diffusion permeability with loading. This new theory assumes the variation of the activation energy for surface diffusion with surface loading, and it is validated with diffusion data of propane, n-butane, n-hexane, benzene and ethanol in activated carbon. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.
Resumo:
It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The postural response to translation of the support surface may be influenced by the performance of an ongoing voluntary task. This study was designed to test this proposal by applying lateral perturbations while subjects handled a load in the frontal plane. Measurements were made of medio-lateral displacement of the centre of pressure, angular displacement of the trunk and thigh in the frontal plane and intra-abdominal pressure. Subjects were translated randomly to the left and right in a variety of conditions that involved standing either quietly or with a 5 kg load in their left hand, which they were required either to hold statically or to lift or lower. The results indicate that when the perturbation occurred towards the loaded left side the subjects were able to return their centre of pressure, trunk and thigh rapidly and accurately to the initial position. However, when the perturbation occurred towards the right (away from the load) this correction was delayed and associated with multiple changes in direction of movement, suggesting decreased efficiency of the postural response. This reduced efficiency can be explained by a conflict between the motor commands for the ongoing voluntary task and the postural response, and/or by the mechanical effect of the asymmetrical addition of load to the trunk.
Resumo:
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC). Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC > 70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Immunity induced by the 19-kDa fragment of merozoite surface protein 1 is dependent on CD4(+) Th cells. However, we found that adoptively transferred CFSE-labeled Th cells specific for an epitope on Plasmodium yoelii 19-kDa fragment of merozoite surface protein 1 (peptide (p)24), but not OVA-specific T cells, were deleted as a result of P. yoelii infection. As a result of infection, spleen cells recovered from infected p24-specific T cell-transfused mice demonstrated reduced response to specific Ag. A higher percentage of CFSE-labeled p24-specific T cells stained positive with annexin and anti-active caspase-3 in infected compared with uninfected mice, suggesting that apoptosis contributed to deletion of p24-specific T cells during infection. Apoptosis correlated with increased percentages of p24-specific T cells that stained positive for Fas from infected mice, suggesting that P. yoelii-induced apoptosis is, at least in part, mediated by Fas. However, bystander cells of other specificities also showed increased Fas expression during infection, suggesting that Fas expression alone is not sufficient for apoptosis. These data have implications for the development of immunity in the face of endemic parasite exposure.