925 resultados para ¹H and 13C-NMR
Resumo:
Im Rahmen dieser Arbeit wurden neue Ansätze für das Konzept der kapselbasierten Selbstheilungsmaterialien untersucht. Die Verkapselung von Selbstheilungsreagenzien in funktionellen Nanokapseln wurde dabei mittels drei verschiedener Herstellungsmethoden in Miniemulsion durchgeführt. Zunächst wurde die Synthese von Kern-Schale-Partikeln mit verkapselten Monomeren für die Ringöffnungs-Metathese-Polymerisation über freie radikalische Polymerisation in Miniemulsionstropfen beschrieben. Durch orthogonale Reaktionen wurden dabei verschiedene chemische Funktionalisierungen in die Schale eingebracht. Die Rolle des Tensides, das Verhältnis von Kernmaterial zu Monomer sowie die Variation der Lösungsmittelqualität hatte dabei einen Einfluss auf die Struktur der Kolloide. Die Heilungsreagenzien blieben auch nach der Verkapselung aktiv, was durch erfolgreich durchgeführte Selbstheilungsexperimente gezeigt werden konnte. Im zweiten Abschnitt wurde die Synthese von Silica-Nanocontainern für Selbstheilungsmaterialien über Hydrolyse und Polykondensation von Alkoxysilanen an der Grenzfläche der Miniemulsionstropfen beschrieben. Dieser Ansatz ermöglichte die effiziente Verkapselung sowohl von Monomeren als auch von Lösungen der Katalysatoren für die Metathese-Polymerisation in einem Einstufenprozess. Die Größe der Kapseln, die Dicke der Schale und der Feststoffgehalt der Dispersionen konnte dabei in einem weiten Bereich variiert werden. Anhand von erfolgreich durchgeführten Selbstheilungsreaktionen, die über Thermogravimetrie und 13C-NMR-Spektroskopie verfolgt wurden, konnte gezeigt werden, dass die Selbstheilungsreagenzien nach der Verkapselung aktiv blieben. Das dritte Konzept behandelte die Herstellung von polymeren Nanokapseln mittels Emulsions-Lösungsmittelverdampfungstechnik, welche eine milde Methode zur Verkapselung darstellt. Es wurde eine allgemeine und einfache Vorgehensweise beschrieben, in der Selbstheilungsreagenzien in polymeren Nanokapseln unter Verwendung von kommerziell erhältlichen Polymeren als Schalenmaterial verkapselt wurden. Zudem wurden Copolymere aus Styrol und verschiedenen hydrophilen Monomeren über freie radikalische Polymerisation sowie über polymeranaloge Reaktionen hergestellt. Diese statistischen Copolymere waren ebenso wie Blockcopolymere zur Herstellung von wohldefinierten Kern-Schale-Nanopartikeln mittels Emulsions-Lösungsmittelverdampfungsprozess geeignet. rnrnDes Weiteren wurde ein neues Konzept für die Synthese von pH-responsiven Nanokapseln aus tensidfreien Emulsionen unter Verwendung von Copolymeren aus Styrol und Trimethylsilylmethacrylat beschrieben. Der vorgeschlagene synthetische Ansatz ermöglicht dabei die erste Synthese von Nanokapseln über den Emulsions-Lösungsmittelverdampfungsprozess in Abwesenheit eines Tensides. Eine vollständig reversible Aggregation ermöglichte eine leichte Trennung der Nanokapseln von der kontinuierlichen Phase sowie eine Erhöhung der Konzentration der Nanokapseldispersionen auf das bis zu fünffache. Darüber hinaus war es möglich, Selbstheilungsreagenzien in stabilem Zustand zu verkapseln. Abschließend wurde die elektrochemische Abscheidung von mit Monomer gefüllten Nanokapseln in eine Zinkschicht zur Anwendung im Korrosionsschutz behandelt.
Resumo:
A new methodology for the construction of combinatorial libraries is described. The approach, termed dendrimer-supported combinatorial chemistry (DCC), centers on the use of dendrimers as soluble supports. Salient features of DCC include solution phase chemistry, homogeneous purification, routine characterization of intermediates, and high support loadings. To demonstrate the feasibility of DCC, single compounds and a small combinatorial library were prepared via the Fischer indole synthesis. Excellent product yields and purities were obtained, and dendrimer-protected intermediates could be routinely analyzed by 1H and 13C NMR and by mass spectrometry. The results indicate that DCC is a general and efficient strategy for the generation of combinatorial libraries.
Resumo:
A combined chemical and enzymatic procedure has been developed to synthesize macroscopic poly[(R)-(-)-3-hydroxybutyrate] (PHB) granules in vitro. The granules form in a matter of minutes when purified polyhydroxyalkanoate (PHA) synthase from Alcaligenes eutrophus is exposed to synthetically prepared (R)-3-hydroxybutyryl coenzyme A, thereby establishing the minimal requirements for PHB granule formation. The artificial granules are spherical with diameters of up to 3 microns and significantly larger than their native counterparts (0.5 micron). The isolated PHB was characterized by 1H and 13C NMR, gel-permeation chromatography, and chemical analysis. The in vitro polymerization system yields PHB with a molecular mass > 10 x 10(6) Da, exceeding by an order of magnitude the mass of PHAs typically extracted from microorganisms. We also demonstrate that the molecular mass of the polymer can be controlled by the initial PHA synthase concentration. Preliminary kinetic analysis of de novo granule formation confirms earlier findings of a lag time for the enzyme but suggests the involvement of an additional granule assembly step. Minimal requirements for substrate recognition were investigated. Since substrate analogs lacking the adenosine 3',5'-bisphosphate moiety of (R)-3-hydroxybutyryl coenzyme A were not accepted by the PHA synthase, we provide evidence that this structural element of the substrate is essential for catalysis.
Resumo:
O estudo químico das folhas e dos frutos de P. richardiaefolium resultou no isolamento de oito lignanas, sendo duas lignanas furofurânicas (sesamina e kobusina), quatro lignanas dibenzilbutirolactônicas (hinokinina, kusunokinina, arctigenina e haplomirfolina), duas lignanas dibenzilbutirolactólicas (cubebina e 3,4- dimetoxi-3,4-desmetilenodioxicubebina), dois cinamatos de bornila (ferulato de bornila e cumarato de bornila) e na identificação de duas amidas (piplartina e diidropiplartina). Das folhas de P. richardiaefolium foi extraído e analisado o óleo volátil. As estruturas das substâncias isoladas foram identificadas através de métodos espectroscópicos (RMN de 1H e de 13C e espectrometria de massas). O estudo de análise de componentes principais (PCA) das espécies Piper (P. truncatum - k 616, P. richardiaefolium - k 290, P. richardiaefolium - k 350, P. richardiaefolium - k 593, P. truncatum - k 597, P. pseudopotifolium - k 598, P. richardiaefolium - k 854, P. richardiaefolium - k 610, P. truncatum - k 112, P. pseudopotifolium - k 211 e P. cernuum - k 137) permitiu agrupar as espécies em dois grandes grupos e quatro subgrupos em relação à similaridade entre elas. Ligninas do caule de seis espécies de Piper foram extraídas utilizando o método de degradação de Klason e método de Bjorkman, e analisadas por métodos espectroscópicos (IV, RMN de 1H e de 13C). O método de degradação por oxidação por nitrobenzeno foi o escolhido para determinar a relação entre os monolignóis siringila e guaiacila. Os principais metabólitos das espécies estudadas foram comparados com os tipos de ligninas das mesmas espécies e os resultados sugeriram uma independência entre as vias biossintéticas de ligninas e lignanas.
Resumo:
This thesis describes an experimental investigation of synthesis of polystyrene under various polymerization conditions such as solvent polarity, temperature, initial concentrations of initiator, catalyst, monomer and added salts or co-catalyst, which was achieved using the living cationic polymerization technology in conjunction with gel permeation chromatography (GPC) and NMR spectroscopy. Polymerizations of styrene were conducted using 1-phenyl ethylchloride (1-PEC) as an initiator and tin tetrachloride (SnCI4) as a catalyst in the presence of tetra-n-Butylammonium chloride (nBu4NCI). Effects of solvent polarity varied by mixing dichloromethane (DCM) and less polar cyclohexane (C.hex), temperature, initial concentrations of SnC14, 1-PEC and nBu4NCI on the polymerizations were examined, and the conditions under which a living polymerization can be obtained were optimised as: [styrene]o ~ 0.75 - 2 M; [1-PEC]o ~ 0.005 - 0.05 M; [SnCI4Jo ~ 0.05 - 0.4 M; [nBu4NCIJo ~ 0.001 - 0.1 M; DCM/C.hex ~ 50/0 - 20/30 v/v; T ~ 0 to -45°C. Kinetic studies of styrene polymerization using the Omnifit sampling method showed that the number average molecular weight (Mn) of the polymers obtained increased in direct proportion to monomer conversion and agreed well with the theoretical Mn expected from the concentration ratios of monomer to initiator. The linearities of both the 1n([MJoI[M]) vs. time plot and the Mn vs. monomer conversion plot, and the narrow molecular weight distribution (MWD) measured using GPC demonstrated the livingness of the polymerizations, indicating the absence of irreversible termination and transfer within the lifetimes of the polymerizations. The proposed 'two species' propagation mechanism was found to apply for the styrene polymerization with 1-PEC/SnCI4 in the presence of nBu4NCl. The further kinetic experiments showed that living styrene polymerizations were achieved using the 1-PEC/SnCI4 initiating system in mixtures of DCM/C.hex 30/20 v/v at -15°C in the presence of various bromide salts, tetra-n-butylammonium bromide, tetra-n-pentylammonium bromide, tetra-n-heptylammonium bromide, and tetra-n-octylammonium bromide, respectively. The types of the bromide salts were found to have no significant effect on monomer conversion, Mn, polydispersity and initiation efficiency. Living polymerizations of styrene were also achieved using titanium tetrachloride (TiCI4) as a catalyst and 1-PEC as an initiator in the presence of a small amount of 2,6-di-tert-butylpyridine or pyridine instead of nBu4NCl. GPC analysis showed that the polymers obtained had narrow polydispersities (P.D. < 1.3), and the linearities of both the In([MJo/[MJ) vs. time plot and the Mn vs. monomer conversion plot demonstrated that the polymerizations are living, when the ratio of DCM and C.hex was less than 40 : 10 and the reaction temperature was not lower than -15°C. The reaction orders relative to TiCl4 and 1-PEC were estimated from the investigations into the rate of polymerization to be 2.56 and 1.0 respectively. lH and 13C NMR analysis of the resultant polystyrene would suggest the end-functionality of the product polymers is chlorine for all living polymerizations.
Resumo:
The aim of this study was to use the transformation of anionic to metathesis polymerization to produce block co-polymers of styrene-b-pentenylene using WC16 /PStLi and WC16/PStLi/ AlEtC12 catalyst systems. Analysis of the products using SEC and 1H and 13C NMR spectroscopy enabled mechanisms for metathesis initiation reactions to be proposed. The initial work involved preparation of the constituent homo-polymers. Solutions of polystyryllithium in cyclohexane were prepared and diluted so that the [PStLi]o<2x10-3M. The dilution produced initial rapid decay of the active species, followed by slower spontaneous decay within a period of days. This was investigated using UV / visible spectrophotometry and the wavelength of maximum absorbance of the PStLi was found to change with the decay from an initial value of 328mn. to λmax of approximately 340nm. after 4-7 days. SEC analysis of solutions of polystyrene, using RI and UV / visible (set at 254nm.) detectors; showed the UV:RI peak area was constant for a range of polystyrene samples of different moleculor weight. Samples of polypentenylene were prepared and analysed using SEC. Unexpectedly the solutions showed an absorbance at 254nm. which had to be considered when this technique was used subsequently to analyse polymer samples to determine their styrene/ pentenylene co-polymer composition. Cyclohexane was found to be a poor solvent for these ring-opening metathesis polymerizations of cyclopentene. Attempts to produce styrene-b-pentenylene block co-polymers, using a range of co-catalyst systems, were generally unsuccessful as the products were shown to be mainly homopolymers. The character of the polymers did suggest that several catalytic species are present in these systems and mechanisms have been suggested for the formation of initiating carbenes. Evidence of some low molecular weight product with co-polymer character has been obtained. Further investigation indicated that this is most likely to be ABA block copolymer, which led to a mechanism being proposed for the termination of the polymerization.
Resumo:
This thesis is primarily concerned with the synthesis and polymerization of 5-methyl-1;3, 2-dioxathiolan-4-one-2-oxide (lactic acid anhydrosulphite (LAAS)) using anionic initiators under various conditions. Poly(lactic acid) is a biodegradable polymer which finds many uses in biomedical applications such as drug-delivery and wound-support systems. For such applications it is desirable to produce polymers having predictable molecular weight distributions and crystallinity, The use of anionic initiators offers a potential route to the creation of living polymers. The synthesis of LAAS was achieved by means of an established route though the procedure was modified to some extent and a new method of purification of the monomer using copper oxides was introduced, Chromatographic purification methods were also examined but found to be ineffective. An unusual impurity was discovered in some syntheses and this was identified by means of 1H and 13C NMR, elemental analysis and GC-MS. Since poly-α-esters having hydroxyl-bearing substituents might be expected to have high equilibrium water contents and hence low surface tension characteristics which might aid bio-compatibility, synthesis of gluconic acid anhydrosulphite was also attempted and the product characterised by 1H and 13C NMR. The kinetics of the decomposition of lactic acid anhydrosulphite by lithium tert-butoxide in nitrobenzene has been examined by means of gas evolution measurements. The kinetics of the reaction with potassium tert-butoxide (and also sec-butyl lithium) in tetrahydrofuran has been studied using calorimetric techniques. LAAS was block co-polymerized with styrene and also with 1,3-butadiene in tetrahydrofuran (in the latter case a statistical co-polymer was also produced).
Resumo:
Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.
Resumo:
The bile pigment bilirubin-IXα is the degradative product of heme, distributed among mammals and some other vertebrates. It can be recognized as the pigment responsible for the yellow color of jaundice and healing bruises. In this paper we present the first example of the isolation of bilirubin in plants. The compound was isolated from the brilliant orange-colored arils of Strelitzia nicolai, the white bird of paradise tree, and characterized by HPLC−ESMS, UV−visible, 1H NMR, and 13C NMR spectroscopy, as well as comparison with an authentic standard. This discovery indicates that plant cyclic tetrapyrroles may undergo degradation by a previously unknown pathway. Preliminary analyses of related plants, including S. reginae, the bird of paradise, also revealed bilirubin in the arils and flowers, indicating that the occurrence of bilirubin is not limited to a single species or tissue type.
Resumo:
This work describes the synthesis and study of the application of a new surfactant (Triester Lipophilic – TEL) obtained by citric acid with octanol. It is reaction was followed by thin layer chromatography (TLC) and after purification the product was characterized by proton and 13 – carbon nuclear magnetic resonance spectroscopy ( H and 13C NMR), thermogravimetric analysis (TGA) and surface tension analysis of oil-in-water emulsions. The TEL performance as surfactant in ester, n-paraffin and biodiesel based drilling fluids on the 70/30 and 60/40 water- oil rations (WOR) was evaluated by comparative tests of two commercial products used in the fields. These drilling fluids were aged in roller oven at 200 0 F during 16 h. The rheological and electric stability measurements were carried out at 135 ºF, the phase separation was evaluated after seven days at rest and the filtrate volume of drilling fluids was determined at high temperature and high pressure. The rheological behavior of the drilling fluids was evaluated by the flow curves. The results showed that the drilling fluids studied here presented Binghamian behavior as well as the used in the oil fields. The laboratory tests showed that the TEL reduced the filtrate volume and promoted the enhance of the thermal and mechanical stabilities.
Resumo:
The Waltheria genus belonging to the Sterculiaceae family, it is reported as a prolific source of flavonoids and quinolone alkaloids, substances of great interest due to several associated biological activities. This work describes a novel phytochemical study from Waltheria ferruginea, aiming to contribute to the chemical knowledge of this specie and the isolation of substances with biological potential. For the phytochemical study were used chromatography techniques on silica gel and molecular exclusion in Sephadex LH-20.The structural elucidation of the isolated compounds was performed through spectrometric techniques 1H and 13C NMR, including uni and bidimensional pulse sequences, and comparison with data from literature. Five substances were isolated, namely: the flavonids kaempferol-3-O-β-(6''-cumaroil)-glucopyranoside (F1) and kaempferol -3 -O- β - glucopyranoside (F2), both analyzes with pharmacological properties, the flavonol quercetin-3-O-β-glucopyranoside (F3 ) pure and in the epimeric mixture α (F3') and (F3), the terpenegeranyl - geranyl (G1) and the 12-hydroxi-octadecanoic acid, all no previous reported in the literature.
Resumo:
A new titanium catalyst easily synthesized from ethylmaltol bidentate chelator ligand was studied in homogeneous and heterogeneous ethylene polymerization. The dichlorobis(3-hydroxy-2-ethyl-4-pyrone)titanium(IV) complex was characterized by 1H and 13C NMR (nuclear magnetic resonance), UV-Vis and elemental analysis. Theoretical study by density functional theory (DFT) showed that the complex chlorines exhibit cis configuration, which is important for the activity in olefin polymerization. The complex was supported by two methods, direct impregnation or methylaluminoxane (MAO) pre-treatment, in five mesoporous supports: MCM-41 (micro and nano), SBA-15 and also the corresponding modified Al species. All the catalytic systems were active in ethylene polymerization and the catalytic activity was strongly influenced by the method of immobilization of the catalyst and the type of support.
Resumo:
We hypothesised that, during occlusion inside granular aggregates of oxide-rich soils, the light fraction organic matter would undergo a strong process of decomposition, either due to the slow process of aggregate formation and stabilisation or due to digestion in the macro- and meso-fauna guts. This process would favour the accumulation of recalcitrant materials inside aggregates. The aim of this study was to compare the dynamics and the chemical composition of free and occluded light fraction organic matter in a natural cerrado vegetation (woodland savannah) and a nearby pasture (Brachiaria spp.) to elucidate the transformations during occlusion of light fraction in aggregates of a clayey Oxisol. Nuclear Magnetic Resonance of the 13C, with Cross Polarisation and Magic Angle Spinning (13C-CPMAS-NMR), and 13C/12C isotopic ratio were combined to study organic matter composition and changes in carbon dynamics, respectively. The occluded light fraction had a slower turnover than the free light fraction and the heavy fraction. Organic matter in the occluded fraction also showed a higher degree of decomposition. The results confirm that processes of soil organic matter occlusion in the typical "very fine strong granular" structure of the studied oxide-rich soil led to an intense transformation, selectively preserving stable organic matter. The small amount of organic material stored as occluded light faction, as well as its stability, suggests that this is not an important or manageable sink for sequestration of atmospheric CO2.
Resumo:
Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.