998 resultados para (3 chlorophenyl)piperazine
Resumo:
Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.
Resumo:
This tutorial is designed to assist users who wish to use the LCD screen on the Spartan-3E board. In this tutorial, the PicoBlaze microcontroller is used to control the LCD. The tutorial is organised into three Parts. In Part A, code is written to display the message "Hello World" on the LCD. Part B demonstrates how to define and display custom characters. Finally, Part C shows how the display can be shifted and flashed. Shifting is done by using a delay in the main PicoBlaze program loop, while flashing is done using the PicoBlaze interrupt. The slider switches can be used to select the shifting direction, and to turn shifting and flashing on and off.
Resumo:
Abnormal “polymer-in-salt” conduction behavior is observed in a solid electrolyte composed of lithium iodide (LiI) and 3-hydroxypropionitrile (HPN). Based on comprehensive investigations by X-ray diffraction (XRD) and Raman and infrared spectroscopy, this abnormal conduction behavior is attributed to the formation of new ionic associates [Lim +In−]· · ·N C (m> n) and the reinforced hydrogen bonding of I· · ·HO in the electrolyte at high LiI concentrations.
Resumo:
Purpose To develop a novel 3-D cell culture model with the view to studying the pathomechanisms underlying the development of age-related macular degeneration (AMD). Our central hypothesis is that the silk structural protein fibroin used in conjunction with cultured human cells can be used to mimic the structural relationships between the RPE and choriocapillaris in health and disease. Methods Co-cultures of human RPE cells (ARPE-19 cells grown in Miller’s medium) and microvascular endothelial cells (HMEC-1 cells grown in endothelial culture medium) were established on opposing sides of a synthetic Bruch’s membrane (3 microns thick) constructed from B mori silk fibroin. Cell attachment was facilitated by pre-coating the fibroin membrane with vitronectin (for ARPE-19 cells) and gelatin (for HMEC-1 cells) respectively. The effects of tropoelastin on attachment of ARPE-19 cells was also examined. Barrier function was examined by measurement of trans-epithelial resistance (TER) using a voltohmmeter (EVOM-2). The phagocytic activity of the synthetic RPE was tested using vitronectin-coated microspheres (2 micron diameter FluoSpheres). In some cultures, membrane defects were created by puncturing within a 24 G needle. The architecture of the synthetic tissue before and after wounding was examined by confocal microscopy after staining for ZO-1 and F-actin. Results The RPE layer of the 3D model developed a cobblestoned morphology (validated by staining for ZO-1 and F-actin), displayed barrier function (validated by measurement of TER) and demonstrated cytoplasmic uptake of vitronectin-coated microspheres. Attachment of ARPE-19 cells to fibroin was unaffected by tropoelastin. Microvascular endothelial cells attached well to the gelatin-coated surface of the fibroin membrane and remained physically separated from the overlaying RPE layer. The fibroin membranes were amenable to puncturing without collapse thus providing the opportunity to study transmembrane migration of the endothelial cells. Conclusions Synthetic Bruch’s membranes constructed from silk fibroin, vitronectin and gelatin, support the co-cultivation of RPE cells and microvascular endothelial cells. The resulting RPE layer displays functions similar to that of native RPE and the entire tri-layered structure displays potential to be used as an in vitro model of choroidal neovascularization.
Resumo:
Problem crying in the first few months of life is both common and complex, arising out of multiple interacting and co-evolving factors. Parents whose babies cry and fuss a lot receive conflicting advice as they seek help from multiple health providers and emergency departments, and may be admitted into tertiary residential services. Conflicting advice is costly, and arises out of discipline-specific interpretations of evidence. An integrated, interdisciplinary primary care intervention (‘The Possums Approach’) for cry-fuss problems in the first months of life was developed from available peer-reviewed evidence. This study reports on preliminary evaluation of delivery of the intervention. A total of 20 mothers who had crying babies under 16 weeks of age (average age 6.15 weeks) completed questionnaires, including the Crying Patterns Questionnaire and the Edinburgh Postnatal Depression Scale, before and 3-4 weeks after their first consultation with trained primary care practitioners. Preliminary evaluation is promising. The Crying Patterns Questionnaire showed a significant decrease in crying and fussing duration, by 1 h in the evening (P = 0.001) and 30 min at night (P = 0.009). The median total amount of crying and fussing in a 24-h period was reduced from 6.12 to 3 h. The Edinburgh Postnatal Depression Scale showed a significant improvement in depressive symptoms, with the median score decreasing from 11 to 6 (P = 0.005). These findings are corroborated by an analysis of results for the subset of 16 participants whose babies were under 12 weeks of age (average age 4.71 weeks). These preliminary results demonstrate significantly decreased infant crying in the evening and during the night and improved maternal mood, validating an innovative interdisciplinary clinical intervention for cry-fuss problems in the first few months of life. This intervention, delivered by trained health professionals, has the potential to mitigate the costly problem of health professionals giving discipline-specific and conflicting advice post-birth.
Resumo:
The objective of this work is to analyze ludlamite (Fe,Mn,Mg)3(PO4)2⋅4H2O from Boa Vista mine, Galiléia, Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to be a ferrous phosphate with some minor substitution of Mg and Mn. Raman bands at 917 and 950 cm−1 are assigned to the symmetric stretching mode of and units. Raman bands at 548, 564, 599 and 634 cm−1 are assigned to the ν4 bending modes. Raman bands at 2605, 2730, 2896 and 3190 cm−1 and infrared bands at 2623, 2838, 3136 and 3185 cm−1 are attributed to water stretching vibrations. By using a Libowitzky empirical function, hydrogen bond distances are calculated from the OH stretching wavenumbers. Strong hydrogen bonds in the structure of ludlamite are observed as determined by their hydrogen bond distances. The application of infrared and Raman spectroscopy to the study of ludlamite enables the molecular structure of the pegmatite mineral ludlamite to be assessed.
Resumo:
Papagoite is a silicate mineral named after an American Indian tribe and was used as a healing mineral. Papagoite CaCuAlSi2O6(OH)3 is a hydroxy mixed anion compound with both silicate and hydroxyl anions in the formula. The structural characterization of the mineral papagoite remains incomplete. Papagoite is a four-membered ring silicate with Cu2+ in square planar coordination. The intense sharp Raman band at 1053 cm−1 is assigned to the ν1 (A 1g) symmetric stretching vibration of the SiO4 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in papagoite is strongly distorted. A very intense Raman band observed at 630 cm−1 with a shoulder at 644 cm−1 is assigned to the ν4 vibrational modes. Intense Raman bands at 419 and 460 cm−1 are attributed to the ν2 bending modes. Intense Raman bands at 3545 and 3573 cm−1 are assigned to the stretching vibrations of the OH units. Low-intensity Raman bands at 3368 and 3453 cm−1 are assigned to water stretching modes. It is suggested that the formula of papagoite is more likely to be CaCuAlSi2O6(OH)3 · xH2O. Hence, vibrational spectroscopy has been used to characterize the molecular structure of papagoite.
Resumo:
In the structure of the title compound, [Mg(C7H3N2O6)2(H2O)4] . 4H2O), the slightly distorted octahedral MgO6 coordination polyhedron comprises two trans-related carboxyl O-atom donors from mononodentate 3,5-dinitrobenzoate ligands, and four water molecules. The coordinated water molecules and the four water molecules of solvation give both intra- and inter-unit O-H...O hydrogen-bonding interactions with carboxyl, water and nitro O-atom acceptors, giving a three-dimensional structure.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of cyrilovite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Cyrilovite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of cyrilovite with that of wardite. The Raman spectrum of cyrilovite in the 800–1400 cm−1 spectral range shows two intense bands at 992 and 1055 cm−1 assigned to the ν1View the MathML source symmetric stretching vibrations. A series of low intensity bands at 1105, 1136, 1177 and 1184 cm−1 are assigned to the ν3View the MathML source antisymmetric stretching modes. The infrared spectrum of cyrilovite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 970 and 1007 cm−1 and are attributed to the ν1View the MathML source symmetric stretching mode. Raman bands are observed at 612 and 631 cm−1 and are assigned to the ν4 out of plane bending modes of the View the MathML source unit. In the 2600–3800 cm−1 spectral range, intense Raman bands for cyrilovite are found at 3328 and 3452 cm−1 with a broad shoulder at 3194 cm−1 and are assigned to OH stretching vibrations. Sharp infrared bands are observed at 3485 and 3538 cm−1. Raman spectroscopy complimented with infrared spectroscopy has enabled the structure of cyrilovite to be ascertained and compared with that of wardite.
Resumo:
We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.
Resumo:
We sought to determine the impact of electrospinning parameters on a trustworthy criterion that could evidently improve the maximum applicability of fibrous scaffolds for tissue regeneration. We used an image analysis technique to elucidate the web permeability index (WPI) by modeling the formation of electrospun scaffolds. Poly(3-hydroxybutyrate) (P3HB) scaffolds were fabricated according to predetermined conditions of levels in a Taguchi orthogonal design. The material parameters were the polymer concentration, conductivity, and volatility of the solution. The processing parameters were the applied voltage and nozzle-to-collector distance. With a law to monitor the WPI values when the polymer concentration or the applied voltage was increased, the pore interconnectivity was decreased. The quality of the jet instability altered the pore numbers, areas, and other structural characteristics, all of which determined the scaffold porosity and aperture interconnectivity. An initial drastic increase was observed in the WPI values because of the chain entanglement phenomenon above a 6 wt % P3HB content. Although the solution mixture significantly (p < 0.05) changed the scaffold architectural characteristics as a function of the solution viscosity and surface tension, it had a minor impact on the WPI values. The solution mixture gained the third place of significance, and the distance was approved as the least important factor.
Resumo:
Deep inelastic neutron scattering measurements on liquid 3He-4He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≃120.0Å-1. The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96K isotherm for 3He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies 〈T〉 of 3He and 4He atoms as a function of x, 〈T〉(x), were extracted from the second moment of J(y). The present determinations of 〈T〉(x) confirm previous experimental findings for both isotopes and, in the case of 3He, a substantial disagreement with theory is found. In particular 〈T〉(x) for the 3He atoms is found to be independent of concentration yielding a value 〈T〉3(x=0.1)≃12K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K.
Resumo:
Ureaplasma species are the microorganisms most frequently associated with adverse pregnancy outcomes. The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a key virulence factor of ureaplasmas. The MBA demonstrates size variation, which we have shown previously to be correlated with the severity of chorioamnion inflammation. We aimed to investigate U. parvum serovar 3 pathogenesis in vivo, using a sheep model, by investigating: MBA variation after long term (chronic) and short term (acute) durations of in utero ureaplasma infections, and the severity of chorioamnionitis and inflammation in other fetal tissues. Inocula of 2x107 colony-forming-units (CFU) of U. parvum serovar 3 (Up) or media controls (C) were injected intra-amniotically into pregnant ewes at one of three time points: day 55 (69d Up, n=8; C69, n=4); day 117 (7d Up, n=8; C7, n=2); and day 121 (3d Up, n=8; C3, n=2) of gestation (term=145-150d). At day 124, preterm fetuses were delivered surgically. Samples of chorioamnion, fetal lung, and umbilical cord were: (i) snap frozen for subsequent ureaplasma culture, and (ii) fixed, embedded, sectioned and stained by haematoxylin and eosin stain for histological analysis. Selected fetal lung clinical ureaplasma isolates were cloned and filtered to obtain cultures from a single CFU. Passage 1 and clone 2 ureaplasma cultures were tested by western blot to demonstrate MBA variation. In acute durations of ureaplasma infection no MBA variants (3d Up) or very few MBA variants (7d Up) were present when compared to the original inoculum. However, numerous MBA size variants were generated in vivo (alike within contiguous tissues, amniotic fluid and fetal lung, but different variants were present within chorioamnion), during chronic, 69d exposure to ureaplasma infection. For the first time we have shown that the degree of ureaplasma MBA variation in vivo increased with the duration of gestation.
Resumo:
Background: We have developed a sheep model of intrauterine ureaplasma infection. We aimed to examine the capability of ureaplasmas in the amniotic fluid to infect the fetus and alter fetal development...
Resumo:
Dear Editor We thank Dr Klek for his interest in our article and giving us the opportunity to clarify our study and share our thoughts. Our study looks at the prevalence of malnutrition in an acute tertiary hospital and tracked the outcomes prospectively.1 There are a number of reasons why we chose Subjective Global Assessment (SGA) to determine the nutritional status of patients. Firstly, we took the view that nutrition assessment tools should be used to determine nutrition status and diagnose presence and severity of malnutrition; whereas the purpose of nutrition screening tools are to identify individuals who are at risk of malnutrition. Nutritional assessment rather than screening should be used as the basis for planning and evaluating nutrition interventions for those diagnosed with malnutrition. Secondly, Subjective Global Assessment (SGA) has been well accepted and validated as an assessment tool to diagnose the presence and severity of malnutrition in clinical practice.2, 3 It has been used in many studies as a valid prognostic indicator of a range of nutritional and clinical outcomes.4, 5, 6 On the other hand, Malnutrition Universal Screening Tool (MUST)7 and Nutrition Risk Screening 2002 (NRS 2002)8 have been established as screening rather than assessment tools.