976 resultados para zero tillage
Resumo:
The grain yield of upland rice under no-tillage has been unsatisfactory and one reason could be the nitrate/ammonium balance in the soil. Cover crops and nitrogen fertilization can be used to change the nitrate/ammonium relation in the soil and improve conditions for the development of upland rice in the no-tillage (NT) system. The aim was to study the effect of cover crops and nitrogen sources on grain yield of upland rice under no tillage. The study was carried out on the Fazenda Experimental Lageado, in Botucatu, State of São Paulo, Brazil, in an Oxisol area under no-tillage for six years. The experiment was arranged in a randomized block split-plot design with four replications. The plots consisted of six cover crop species (Brachiaria brizantha, B. decumbens, B. humidicola, B. ruziziensis, Pennisetum americanum, and Crotalaria spectabilis) and the split-plots of seven forms of N fertilizer management. Millet is the best cover crop to precede upland rice under NT. The best form of N application, as nitrate, is in split rates or total rate at topdressing or an ammonium source with or without a nitrification inhibitor, in split doses. When the cover crops C. spectabilis, B. brizantha, B. decumbens, B. humidicola, and B. ruziziensis preceded rice, they induced the highest grain yield when rice was fertilized with N as ammonium sulfate source + nitrification inhibitor in split rates or total dose at topdressing.
Resumo:
Soil erosion is one of the chief causes of agricultural land degradation. Practices of conservation agriculture, such as no-tillage and cover crops, are the key strategies of soil erosion control. In a long-term experiment on a Typic Paleudalf, we evaluated the temporal changes of soil loss and water runoff rates promoted by the transition from conventional to no-tillage systems in the treatments: bare soil (BS); grassland (GL); winter fallow (WF); intercrop maize and velvet bean (M+VB); intercrop maize and jack bean (M+JB); forage radish as winter cover crop (FR); and winter cover crop consortium ryegrass - common vetch (RG+CV). Intensive soil tillage induced higher soil losses and water runoff rates; these effects persisted for up to three years after the adoption of no-tillage. The planting of cover crops resulted in a faster decrease of soil and water loss rates in the first years after conversion from conventional to no-tillage than to winter fallow. The association of no-tillage with cover crops promoted progressive soil stabilization; after three years, soil losses were similar and water runoff was lower than from grassland soil. In the treatments of cropping systems with cover crops, soil losses were reduced by 99.7 and 66.7 %, compared to bare soil and winter fallow, while the water losses were reduced by 96.8 and 71.8 % in relation to the same treatments, respectively.
Resumo:
Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation), soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity) and plant parameters (root growth system, soybean grain yield, and oat dry matter production) were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.
Resumo:
Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.
Resumo:
The hypothesis of this study was that the absence of soil tillage in long-term no-tillage (NT) systems can be detrimental to soil aeration. The objective was to assess the aeration condition of an Oxisol (Rhodic Ferrasol), very clayey texture (750 g kg-1 of clay; 200 g kg-1 of sand), after 30 years of cultivation under NT. The physical property soil air permeability (Ka) is sensitive to changes in the soil pore system. Aside from Ka, the air-filled porosity (ε a) and indices of pore continuity (K1 and N), derived from the relationship between Ka and εa, were used as indices of soil aeration. From the soil layers 0.0-0.1 and 0.1-0.2 m, 240 undisturbed samples were collected along a transect perpendicular to the crop rows, at three sampling positions: corn plant row (CR); center of the interrow (INT); and the equidistant point between CR and INT (PE). The properties Ka and εa were determined at soil matric potentials (Ψm) of -2, -4, -6, -10, -30, and -50 kPa. Soil bulk density (BD) was also determined. The results confirmed the hypothesis. In the 0.0-0.1 m layer, Ka, K1, N and Ψa were significantly greater and BD significantly lower in CR than at the other sampling positions. At a Ψm of -10 kPa, the Ka of CR was 6.9 and 8.4 times higher than in PE and INT, respectively, in the 0.0-0.1 m layer. The properties Ka, K1 and N were sensitive enough to detect changes in the pore system and their differences between the sampling positions demonstrated the importance of the spatial location for soil sampling. Tilling the crop rows provides better soil aeration under NT.
Resumo:
The use of urban waste compost as nutrient source in agriculture has been a subject of investigation in Brazil and elsewhere, although the effects on soil physical and chemical properties and processes are still poorly known. The aim of this study was to evaluate the effect of application of urban waste compost and mineral fertilizer on soil aggregate stability and organic carbon and total nitrogen content of a Rhodic Hapludox under no-tillage in the northwestern region of Rio Grande do Sul, Brazil, in the 2009/2010 and 2010/2011 growing seasons. The experiment was arranged in a 2 × 6 (seasons and fertilization) factorial in a randomized complete block design with four replications. The factor time consisted of two growing seasons (sunflower in 2009/10 and maize in 2010/11) and the factor fertilization of five rates of urban waste compost (0, 25, 50, 75 and 100 m³ ha-1), and mineral fertilizer. Soil samples were collected from the 0.0-0.10 m layer to determine aggregate stability (mean weight and geometric diameter), soil organic carbon (SOC) and total nitrogen (TN). Rates of up to 75 m³ ha-1 of urban waste compost, after two years of application to no-tillage maize and sunflower, improved aggregation compared to mineral fertilization in a Rhodic Hapludox. After the second crop, the SOC and TN contents increased linearly with the levels of urban waste compost.
Nitrogen fertilization (15NH4NO3) of palisadegrass and residual effect on subsequent no-tillage corn
Resumo:
Nitrogen is required in large amounts by plants and their dinamics in corn and perennial forages intercropped is little known. This study analyzed the efficiency of nitrogen fertilization (15NH4NO3) applied after corn grain harvest to palisadegrass (Brachiaria brizantha cv. Marandu) in intercrops sown at two times, as well as the N residual effect on the subsequent corn crop. The field experiment was performed in Botucatu, São Paulo State, in southeastern Brazil, on a structured Alfisol under no-tillage. The experiment was arranged in a randomized block design in a split plot scheme with four replications. The main plots consisted of two intercropping systems (corn and palisadegrass sown together and palisadegrass sown later, at corn top-dressing fertilization). The subplots consisted of four N rates (0, 30, 60, and 120 kg ha-1 N). The subplots contained microplots, in which enriched ammonium nitrate (15NH4NO3) was applied at the same rates. The time of intercrop sowing affected forage dry matter production, the amount of fertilizer-derived N in and the N use efficiency by the forage plants. Nitrogen applied in autumn to palisadegrass intercropped with corn, planted either at corn sowing or at N top-dressing fertilization, increased the forage yield up to a rate of 60 kg ha-1. The amount of fertilizer-derived N by the forage plants and the fertilizer use efficiency by palisadegrass were highest 160 days after fertilization for both intercrop sowing times, regardless of N rates. Residual N did not affect the N nutrition of corn plants grown in succession to palisadegrass, but increased grain yield at rates of 60 and 120 kg ha-1 N, when corn was grown on palisadegrass straw from the intercrop installed at corn fertilization (top-dressing). Our results indicated that the earlier intercropping allowed higher forage dry matter production. On the other hand, the later intercrop allowed a higher corn grain yield in succession to N-fertilized palisadegrass.
Resumo:
Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation). The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L.) Millsp; and Sorghum bicolor (L.) Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.
Resumo:
Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols). In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT), conventional tillage (CT), and minimum tillage (MT) with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb) and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.). Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.
Resumo:
Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.
Resumo:
ABSTRACT Soil tillage that maintains the productivity of sugarcane plantations, providing an area for the root development and without traffic on crop rows, has given rise to new technologies in rural areas. The purpose of this study was to evaluate the soil physical properties in two sugarcane plantations, one of which was prepared with deep tilling and the other with conventional tillage. The experiment was conducted in Lençóis Paulista, São Paulo State. Soil penetration resistance and relative density were analyzed. The cone index was lower in deep-tilled soil without traffic in all layers, than in deep-tilled soil with traffic and in conventional tillage. In both tillage treatments, the relative density values were acceptable in the 0.00-0.15 m soil layer, but considered detrimental for sugarcane development in the 0.15-0.30 and 0.30-0.45 m layers.
Resumo:
We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln (t/t0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe3O4 particles.
Resumo:
ABSTRACT The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.
Resumo:
ABSTRACT Understanding the spatial behavior of soil physical properties under no-tillage system (NT) is required for the adoption and maintenance of a sustainable soil management system. The aims of this study were to quantify soil bulk density (BD), porosity in the soil macropore domain (PORp) and in the soil matrix domain (PORm), air capacity in the soil matrix (ACm), field capacity (FC), and soil water storage capacity (FC/TP) in the row (R), interrow (IR), and intermediate position between R and IR (designated IP) in the 0.0-0.10 and 0.10-0.20 m soil layers under NT; and to verify if these soil properties have systematic variation in sampling positions related to rows and interrows of corn. Soil sampling was carried out in transect perpendicular to the corn rows in which 40 sampling points were selected at each position (R, IR, IP) and in each soil layer, obtaining undisturbed samples to determine the aforementioned soil physical properties. The influence of sampling position on systematic variation of soil physical properties was evaluated by spectral analysis. In the 0.0-0.1 m layer, tilling the crop rows at the time of planting led to differences in BD, PORp, ACm, FC and FC/TP only in the R position. In the R position, the FC/TP ratio was considered close to ideal (0.66), indicating good water and air availability at this sampling position. The R position also showed BD values lower than the critical bulk density that restricts root growth, suggesting good soil physical conditions for seed germination and plant establishment. Spectral analysis indicated that there was systematic variation in soil physical properties evaluated in the 0.0-0.1 m layer, except for PORm. These results indicated that the soil physical properties evaluated in the 0.0-0.1 m layer were associated with soil position in the rows and interrows of corn. Thus, proper assessment of soil physical properties under NT must take into consideration the sampling positions and previous location of crop rows and interrows.
Resumo:
ABSTRACT Tillage systems can influence C sequestration by changing aggregate formation and C distribution within the aggregate. This study was undertaken to explore the impact of no-tillage without straw (NT-S) and with straw (NT+S), and moldboard plow without straw (MP-S) and with straw (MP+S), on soil aggregation and aggregate-associated C after six years of double rice planting in a Hydragric Anthrosol in Guangxi, southwest of China. Soil samples of 0.00-0.05, 0.05-0.20 and 0.20-0.30 m layers were wet-sieved and divided into four aggregate-size classes, >2 mm, 2.00-0.25 mm, 0.25-0.053 and <0.053 mm, respectively, for measuring aggregate associated C and humic and fulvic acids. Results showed that the soil organic carbon (SOC) stock in bulk soil was 40.2-51.1 % higher in the 0.00-0.05 m layer and 11.3-17.0 % lower in the 0.05-0.20 m layer in NT system (NT+S and NT-S) compared to the MP system (MP+S and MP-S), respectively. However, no statistical difference was found across the whole 0.00-0.30 m layer. The NT system increased the proportion of >2 mm aggregate fraction and reduced the proportion of <0.053 mm aggregates in both 0.00-0.05 and 0.05-0.20 m layers. The SOC concentration, SOC stock and humic and fulvic acids within the >0.25 mm macroaggregate fraction also significantly increased in the 0.00-0.5 m layer in NT system. However, those within the 2.00-0.25 mm aggregate fraction were significantly reduced in the 0.05-0.200 m layer under NT system. Straw incorporation increased not only the SOC stock in bulk soil, but also the proportion of macroaggregate, aggregate associated with SOC and humic and fulvic acids concentration within the aggregate. The effect of straw on C sequestration might be dependent on the location of straw incorporation. In conclusion, the NT system increased the total SOC accumulation and humic and fulvic acids within macroaggregates, thus contributing to C sequestration in the 0.00-0.05 m layer.