944 resultados para water availability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although tree nutrition has not been the primary focus of large climate change experiments on trees, we are beginning to understand its links to elevated atmospheric CO2 and temperature changes. This review focuses on the major nutrients, namely N and P, and deals with the effects of climate change on the processes that alter their cycling and availability. Current knowledge regarding biotic and abiotic agents of weathering, mobilization and immobilization of these elements will be discussed. To date, controlled environment studies have identified possible effects of climate change on tree nutrition. Only some of these findings, however, were verified in ecosystem scale experiments. Moreover, to be able to predict future effects of climate change on tree nutrition at this scale, we need to progress from studying effects of single factors to analysing interactions between factors such as elevated CO2, temperature or water availability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within a changing climate, Mediterranean ‘Garrigue’ xerophytes are increasingly recommended as suitable urban landscape plants in north-west Europe, based on their capacity to tolerate high temperature and reduced water availability during summer. Such species, however, have a poor reputation for tolerating waterlogged soils; paradoxically a phenomenon that may also increase in north-west Europe due to predictions for both higher volumes of winter precipitation, and short, but intensive periods of summer rainfall. This study investigated flooding tolerance in four landscape ‘Garrigue’ species, Stachys byzantina, Cistus × hybridus, Lavandula angustifolia and Salvia officinalis. Despite evolving in a dry habitat, the four species tested proved remarkably resilient to flooding. All species survived 17 days flooding in winter, with Stachys and Lavandula also surviving equivalent flooding duration during summer. Photosynthesis and biomass production, however, were strongly inhibited by flooding although the most tolerant species, Stachys quickly restored its photosynthetic capacity on termination of flooding. Overall, survival rates were comparable to previous studies on other terrestrial (including wetland) species. Subsequent experiments using Salvia (a species we identified as ‘intermediate’ in tolerance) clearly demonstrated adaptations to waterlogging, e.g. acclimation against anoxia when pre-treated with hypoxia. Despite anecdotal information to the contrary, we found no evidence to suggest that these xerophytic species are particularly intolerant of waterlogging. Other climatic and biotic factors may restrict the viability and distribution of these species within the urban conurbations of north-west Europe, but we believe increased incidence of flooding per se should not preclude their consideration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rain shelter experiment was conducted in a 90-year-old Norway spruce stand, in the Kysucké Beskydy Mts (Slovakia). Three rain shelters were constructed in the stand to prevent the rainfall from reaching the soil and to reduce water availability in the rhizosphere. Fine root biomass and necromass were repeatedly measured throughout a growing season by soil coring. We established the quantities of fine root biomass (live) and necromass (dead) at soil depths of 0-5, 5-15, 15-25, and 25-35 cm. Significant differences in soil moisture contents between control and drought plots were found in the top 15 cm of soil after 20 weeks of rainfall manipulation (lasting from early June to late October). Our observations show that even relatively light drought decreased total fine root biomass from 272.0 to 242.8 g m-2 and increased the amount of necromass from 79.2 to 101.2 g m-2 in the top 35 cm of soil. Very fine roots, i.e. those with diameter up to 1 mm, were more affected than total fine roots defined as 0-2 mm. The effect of reduced water availability was depth-specific, as a result we observed a modification of vertical distribution of fine roots. More roots in drought treatment were produced in the wetter soil horizons at 25-35 cm depth than at the surface. We conclude that fine and very fine root systems of Norway spruce have the capacity to re-allocate resources to roots at different depths in response to environmental signals, resulting in changes in necromass to biomass ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the scaling between precipitation and temperature changes in warm and cold climates using six models that have simulated the response to both increased CO2 and Last Glacial Maximum (LGM) boundary conditions. Globally, precipitation increases in warm climates and decreases in cold climates by between 1.5%/°C and 3%/°C. Precipitation sensitivity to temperature changes is lower over the land than over the ocean and lower over the tropical land than over the extratropical land, reflecting the constraint of water availability. The wet tropics get wetter in warm climates and drier in cold climates, but the changes in dry areas differ among models. Seasonal changes of tropical precipitation in a warmer world also reflect this “rich get richer” syndrome. Precipitation seasonality is decreased in the cold-climate state. The simulated changes in precipitation per degree temperature change are comparable to the observed changes in both the historical period and the LGM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40°C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+e-b(t -m)) described declining grain set with increasing t, and t5 was that fitted to give a 5% reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7±0.47°C (S.E.M, 26 d.f.). Drought at anthesis reduced t5 by <2°C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5=33.9°C) but booting was particularly heat susceptible without water (t5 =26.5°C). In one background (cv. Mercia), for NILs varying at the Rht-D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht-D1a, tall, 32.7±0.72; Rht-D1b, semi-dwarf, 29.5±0.85; Rht-D1c, severe dwarf, 24.2±0.72). This trend was not evident for the Rht-B1 locus, or for Rht-D1b in an alternative background (Maris Widgeon). The GA-sensitive severe dwarf Rht12 was more heat tolerant (t5=29.4±0.72) than the similarly statured GA-insensitive Rht-D1c. The GA-sensitive, semi-dwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht-D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semi-dwarfing with GA-insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison to effects of semi-dwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mediterranean region has been identified as a climate change "hot-spot" due to a projected reduction in precipitation and fresh water availability which has potentially large socio-economic impacts. To increase confidence in these projections, it is important to physically understand how this precipitation reduction occurs. This study quantifies the impact on winter Mediterranean precipitation due to changes in extratropical cyclones in 17 CMIP5 climate models. In each model, the extratropical cyclones are objectively tracked and a simple approach is applied to identify the precipitation associated to each cyclone. This allows us to decompose the Mediterranean precipitation reduction into a contribution due to changes in the number of cyclones and a contribution due to changes in the amount of precipitation generated by each cyclone. The results show that the projected Mediterranean precipitation reduction in winter is strongly related to a decrease in the number of Mediterranean cyclones. However, the contribution from changes in the amount of precipitation generated by each cyclone are also locally important: in the East Mediterranean they amplify the precipitation trend due to the reduction in the number of cyclones, while in the North Mediterranean they compensate for it. Some of the processes that determine the opposing cyclone precipitation intensity responses in the North and East Mediterranean regions are investigated by exploring the CMIP5 inter-model spread.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Urban greening solutions such as green roofs help improve residents’ thermal comfort and building insulation. However, not all plants provide the same level of cooling. This is partially due to differences in plant structure and function, including different mechanisms that plants employ to regulate leaf temperature. Ranking of multiple leaf/plant traits involved in the regulation of leaf temperature (and, consequently, plants’ cooling ‘service’) is not well understood. We therefore investigated the relative importance of water loss, leaf colour, thickness and extent of pubescence for the regulation of leaf temperature, in the context of species for semi-extensive green roofs. Leaf temperature were measured with an infrared imaging camera in a range of contrasting genotypes within three plant genera (Heuchera, Salvia and Sempervivum). In three glasshouse experiments (each evaluating three or four genotypes of each genera) we varied water availability to the plants and assessed how leaf temperature altered depending on water loss and specific leaf traits. Greatest reductions in leaf temperature were closely associated with higher water loss. Additionally, in non-succulents (Heuchera, Salvia), lighter leaf colour and longer hair length (on pubescent leaves) both contributed to reduced leaf temperature. However, in succulent Sempervivum, colour/pubescence made no significant contribution; leaf thickness and water loss rate were the key regulating factors. We propose that this can lead to different plant types having significantly different potentials for cooling. We suggest that maintaining transpirational water loss by sustainable irrigation and selecting urban plants with favourable morphological traits is the key to maximising thermal benefits provided by applications such as green roofs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous works suggested that Pleurostima purpurea (Velloziaceae-Barbacenioideae) shows a remarkable capacity to endure desiccation of its vegetative tissues. P. purpurea occurs in monocotyledons mats on soil islands in the Pao de Acucar (Sugar Loaf) one of the most recognizable rock outcrops of the world, in Rio de Janeiro, southeastern Brazil. Mats of P. purpurea occur in cliffs by the sea some meters above the tidal zone. Although living in rock outcrops almost devoid of any soil cover, P. purpurea seems to occur preferably on less exposed rock faces and slightly shady sites. Usually, less extreme adaptations to drought would be expected in plants with the habitat preference of P. purpurea. Relying on this observation, we argue if a combination of different strategies of dealing with low water availability can be found in P. purpurea as on other desiccation tolerant angiosperms. This study aims to examine the occurrence of desiccation tolerant behavior in P. purpurea together with the expression of drought avoidance mechanisms during dehydration progression. For this, it was analyzed the gas exchanges, leaf pigments and relative leaf water content during desiccation and rehydration of cultivated mature individuals. P. purpurea behaved like typical drought avoiders under moderated drought condition with stomatal closure occurring around a relative leaf water content up to 90%. During this process, it was observed a delay in the leaf relative water content (RWC(leaf)) decrease comparing to the plant-soil relative water content (RWC(plant-soil)). As soil dehydration worsened, gas exchanges restrictions progressed until a lack of activity which characterizes anabiosis. The loss of chlorophyll occurs before the end of total dehydration, characterizing the presence of poikilochlorophylly. The chlorophyll degradation follows the RWC(leaf) decrease, which achieved the minimum average value of 17% without incurring in leaf abscission. The chlorophyll re-synthesis seems to start well after the full rehydration of the leaf. During all of this process, carotenoid content remained stable. These results are coherent with a combination of drought avoidance and desiccation tolerance in P. purpurea which seems to be coherent with the amplitude of water availability in the rock outcrop habitat where it occurs, suggesting that the periods of water availability are sufficiently long for the success of the costly desiccation tolerant behavior but too short to make a typical drought avoider species win the competition for exploring the rock outcrop substrate where P. purpurea occurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dinâmica da água em sistema de plantio direto (PD) é alterada em relação ao preparo convencional (PC) devido a modificações na estrutura do solo e a presença de palha na superfície. Para avaliar estas diferenças foram conduzidos experimentos de campo, em 2001/02 e 2002/03, em Eldorado do Sul, RS. O objetivo geral foi quantificar alterações físico-hídricas no perfil e na superfície do solo em PD e PC, com ênfase na dinâmica da água e respostas das plantas de milho. Os sistemas de manejo do solo foram implantados na área em 1995. Foram avaliadas propriedades físicas, a movimentação e a armazenagem de água no solo. Mediu-se a infiltração e a capacidade de campo e monitorou-se a dinâmica da água durante o ciclo da cultura, enfocando a secagem do solo e a extração de água em períodos sem precipitação. Nestes períodos também foi determinada a evaporação da água na superfície e avaliadas respostas das plantas. Os efeitos do plantio direto se evidenciaram nas camadas de solo próximas à superfície. A mesoporosidade foi a propriedade física mais afetada, apresentando uma distribuição exponencial de mesoporos no plantio direto, enquanto no preparo convencional a mesma se aproximou de uma curva normal. Em geral, a condutividade hidráulica, a retenção e a disponibilidade de água foram mais elevadas em plantio direto, principalmente, próximo à superfície. O solo em PD também apresentou maior umidade volumétrica com menor energia de retenção, resultando em redução no avanço da frente de secagem do solo e extração de água. A evaporação também foi maior em PD, demonstrando que a maior umidade no solo em plantio direto se deve ao aumento na capacidade de armazenagem de água. O aprofundamento radicular foi sempre maior no preparo convencional. O plantio direto altera propriedades físicas ligadas à dinâmica da água, proporcionando maior disponibilidade hídrica no solo ao longo do tempo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water injection is the most widely used method for supplementary recovery in many oil fields due to various reasons, like the fact that water is an effective displacing agent of low viscosity oils, the water injection projects are relatively simple to establish and the water availability at a relatively low cost. For design of water injection projects is necessary to do reservoir studies in order to define the various parameters needed to increase the effectiveness of the method. For this kind of study can be used several mathematical models classified into two general categories: analytical or numerical. The present work aims to do a comparative analysis between the results presented by flow lines simulator and conventional finite differences simulator; both types of simulators are based on numerical methods designed to model light oil reservoirs subjected to water injection. Therefore, it was defined two reservoir models: the first one was a heterogeneous model whose petrophysical properties vary along the reservoir and the other one was created using average petrophysical properties obtained from the first model. Comparisons were done considering that the results of these two models were always in the same operational conditions. Then some rock and fluid parameters have been changed in both models and again the results were compared. From the factorial design, that was done to study the sensitivity analysis of reservoir parameters, a few cases were chosen to study the role of water injection rate and the vertical position of wells perforations in production forecast. It was observed that the results from the two simulators are quite similar in most of the cases; differences were found only in those cases where there was an increase in gas solubility ratio of the model. Thus, it was concluded that in flow simulation of reservoirs analogous of those now studied, mainly when the gas solubility ratio is low, the conventional finite differences simulator may be replaced by flow lines simulator the production forecast is compatible but the computational processing time is lower.