919 resultados para visual pattern recognition network
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal
Resumo:
Quan el 1602 els diputats ordenen una nova visura de les obres d'ampliació del Palau de la Generalitat, s'està de fet qüestionant la primitiva traça de Pere Blai. Hom posa en joc tot un seguit de categories, d'acord amb un nou estil visual d'arrel renaixentista que prima la mirada. En són requeriments: els costos econòmics, la visualització de l'edifici –valor de la imatge d'acord amb una intencionada representació del poder civil– i la seva individualització en el teixit urbà –d'aquí, el propòsit d'alliberar l'espai d'una plaça. El Memorial de 1603 s'insereix en una llarga i intricada seqüència. El document, d'interès pel cabal intrínsec d'informació projectual i constructiva, ho és també per a l'exegesi del model clàssic, del seu grau de comprensió i utilització al llindar del segle XVII en l'àmbit del Principat
Resumo:
Biological systems are complex dynamical systems whose relationships with environment have strong implications on their regulation and survival. From the interactions between plant and environment can emerge a quite complex network of plant responses rarely observed through classical analytical approaches. The objective of this current study was to test the hypothesis that photosynthetic responses of different tree species to increasing irradiance are related to changes in network connectances of gas exchange and photochemical apparatus, and alterations in plant autonomy in relation to the environment. The heat dissipative capacity through daily changes in leaf temperature was also evaluated. It indicated that the early successional species (Citharexylum myrianthum Cham. and Rhamnidium elaeocarpum Reiss.) were more efficient as dissipative structures than the late successional one (Cariniana legalis (Mart.) Kuntze), suggesting that the parameter deltaT (T ºCair - T ºCleaf) could be a simple tool in order to help the classification of successional classes of tropical trees. Our results indicated a pattern of network responses and autonomy changes under high irradiance. Considering the maintenance of daily CO2 assimilation, the tolerant species (C. myrianthum and R. elaeocarpum) to high irradiance trended to maintain stable the level of gas exchange network connectance and to increase the autonomy in relation to the environment. On the other hand, the late successional species (C. legalis) trended to lose autonomy, decreasing the network connectance of gas exchange. All species showed lower autonomy and higher network connectance of the photochemical apparatus under high irradiance.
Resumo:
This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.
Resumo:
The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.
Resumo:
The chemical composition of apple juices may be used to discriminate between the varieties for consumption and those for raw material. Fuji and Gala have a chemical pattern that can be used for this classification. Multivariate methods correlate independent continuous chemical descriptors with the categorical apple variety. Three main descriptors of apple juice were selected: malic acid, total reducing sugar and total phenolic compounds. A chemometric approach, employing PCA and SIMCA, was used to classify apple juice samples. PCA was performed with 24 juices from Fuji and Gala, and SIMCA, with 15 juices. The exploratory and predictive models recognized 88% and 64%, respectively, as belonging to a mixed domain. The apple juice from commercial fruits shows a pattern related to cv. Fuji and Gala with boundaries from 0.18 to 0.389 g.100 mL-1 (malic acid), from 8.65 to 15.18 g.100 mL-1 (total reducing sugar) and from 100 to 400 mg.L-1 (total phenolic compounds), but such boundaries were slightly shorter in the remaining set of commercial apple juices, specifically from 0.16 to 0.36 g.100 mL-1, from 9.25 to 15.5 g.100 mL-1 and from 180 to 606 mg.L-1 for acidity, reducing sugar and phenolic compounds, respectively, representing the acid, sweet and bitter tastes.
Resumo:
Psychopathy is associated with well-known characteristics such as a lack of empathy and impulsive behaviour, but it has also been associated with impaired recognition of emotional facial expressions. The use of event-related potentials (ERPs) to examine this phenomenon could shed light on the specific time course and neural activation associated with emotion recognition processes as they relate to psychopathic traits. In the current study we examined the PI , N170, and vertex positive potential (VPP) ERP components and behavioural performance with respect to scores on the Self-Report Psychopathy (SRP-III) questionnaire. Thirty undergraduates completed two tasks, the first of which required the recognition and categorization of affective face stimuli under varying presentation conditions. Happy, angry or fearful faces were presented under with attention directed to the mouth, nose or eye region and varied stimulus exposure duration (30, 75, or 150 ms). We found that behavioural performance to be unrelated to psychopathic personality traits in all conditions, but there was a trend for the Nl70 to peak later in response to fearful and happy facial expressions for individuals high in psychopathic traits. However, the amplitude of the VPP was significantly negatively associated with psychopathic traits, but only in response to stimuli presented under a nose-level fixation. Finally, psychopathic traits were found to be associated with longer N170 latencies in response to stimuli presented under the 30 ms exposure duration. In the second task, participants were required to inhibit processing of irrelevant affective and scrambled face distractors while categorizing unrelated word stimuli as living or nonliving. Psychopathic traits were hypothesized to be positively associated with behavioural performance, as it was proposed that individuals high in psychopathic traits would be less likely to automatically attend to task-irrelevant affective distractors, facilitating word categorization. Thus, decreased interference would be reflected in smaller N170 components, indicating less neural activity associated with processing of distractor faces. We found that overall performance decreased in the presence of angry and fearful distractor faces as psychopathic traits increased. In addition, the amplitude of the N170 decreased and the latency increased in response to affective distractor faces for individuals with higher levels of psychopathic traits. Although we failed to find the predicted behavioural deficit in emotion recognition in Task 1 and facilitation effect in Task 2, the findings of increased N170 and VPP latencies in response to emotional faces are consistent wi th the proposition that abnormal emotion recognition processes may in fact be inherent to psychopathy as a continuous personality trait.
Resumo:
This lexical decision study with eye tracking of Japanese two-kanji-character words investigated the order in which a whole two-character word and its morphographic constituents are activated in the course of lexical access, the relative contributions of the left and the right characters in lexical decision, the depth to which semantic radicals are processed, and how nonlinguistic factors affect lexical processes. Mixed-effects regression analyses of response times and subgaze durations (i.e., first-pass fixation time spent on each of the two characters) revealed joint contributions of morphographic units at all levels of the linguistic structure with the magnitude and the direction of the lexical effects modulated by readers’ locus of attention in a left-to-right preferred processing path. During the early time frame, character effects were larger in magnitude and more robust than radical and whole-word effects, regardless of the font size and the type of nonwords. Extending previous radical-based and character-based models, we propose a task/decision-sensitive character-driven processing model with a level-skipping assumption: Connections from the feature level bypass the lower radical level and link up directly to the higher character level.
Resumo:
Les détecteurs ATLAS-MPX sont des détecteurs Medipix2-USB recouverts de convertisseurs de fluorure de lithium et de polyéthylène pour augmenter l’efficacité de détection des neutrons lents et des neutrons rapides respectivement. Un réseau de quinze détecteurs ATLAS-MPX a été mis en opération dans le détecteur ATLAS au LHC du CERN. Deux détecteurs ATLAS-MPX de référence ont été exposés à des sources de neutrons rapides 252 Cf et 241 AmBe ainsi qu’aux neutrons rapides produits par la réaction 7Li(p, xn) pour l’étude de la réponse du détecteur à ces neutrons. Les neutrons rapides sont principalement détectés à partir des protons de recul des collisions élastiques entre les neutrons et l’hydrogène dans le polyéthylène. Des réactions nucléaires entre les neutrons et le silicium produisent des particules-α. Une étude de l’efficacité de reconnaissance des traces des protons et des particules-α dans le détecteur Medipix2-USB a été faite en fonction de l’énergie cinétique incidente et de l’angle d’incidence. L’efficacité de détection des neutrons rapides a été évaluée à deux seuils d’énergie (8 keV et 230 keV) dans les détecteurs ATLAS-MPX. L’efficacité de détection des neutrons rapides dans la région du détecteur couverte avec le polyéthylène augmente en fonction de l’énergie des neutrons : (0.0346 ± 0.0004) %, (0.0862 ± 0.0018) % et (0.1044 ± 0.0026) % pour des neutrons rapides de 2.13 MeV, 4.08 MeV et 27 MeV respectivement. L’étude pour déterminer l’énergie des neutrons permet donc d’estimer le flux des neutrons quand le détecteur ATLAS-MPX est dans un champ de radiation inconnu comme c’est le cas dans le détecteur ATLAS au LHC.
Resumo:
L’objectif principal de cette thèse était de quantifier et comparer l’effort requis pour reconnaître la parole dans le bruit chez les jeunes adultes et les personnes aînées ayant une audition normale et une acuité visuelle normale (avec ou sans lentille de correction de la vue). L’effort associé à la perception de la parole est lié aux ressources attentionnelles et cognitives requises pour comprendre la parole. La première étude (Expérience 1) avait pour but d’évaluer l’effort associé à la reconnaissance auditive de la parole (entendre un locuteur), tandis que la deuxième étude (Expérience 2) avait comme but d’évaluer l’effort associé à la reconnaissance auditivo-visuelle de la parole (entendre et voir le visage d’un locuteur). L’effort fut mesuré de deux façons différentes. D’abord par une approche comportementale faisant appel à un paradigme expérimental nommé double tâche. Il s’agissait d’une tâche de reconnaissance de mot jumelée à une tâche de reconnaissance de patrons vibro-tactiles. De plus, l’effort fut quantifié à l’aide d’un questionnaire demandant aux participants de coter l’effort associé aux tâches comportementales. Les deux mesures d’effort furent utilisées dans deux conditions expérimentales différentes : 1) niveau équivalent – c'est-à-dire lorsque le niveau du bruit masquant la parole était le même pour tous les participants et, 2) performance équivalente – c'est-à-dire lorsque le niveau du bruit fut ajusté afin que les performances à la tâche de reconnaissance de mots soient identiques pour les deux groupes de participant. Les niveaux de performance obtenus pour la tâche vibro-tactile ont révélé que les personnes aînées fournissent plus d’effort que les jeunes adultes pour les deux conditions expérimentales, et ce, quelle que soit la modalité perceptuelle dans laquelle les stimuli de la parole sont présentés (c.-à.-d., auditive seulement ou auditivo-visuelle). Globalement, le ‘coût’ associé aux performances de la tâche vibro-tactile était au plus élevé pour les personnes aînées lorsque la parole était présentée en modalité auditivo-visuelle. Alors que les indices visuels peuvent améliorer la reconnaissance auditivo-visuelle de la parole, nos résultats suggèrent qu’ils peuvent aussi créer une charge additionnelle sur les ressources utilisées pour traiter l’information. Cette charge additionnelle a des conséquences néfastes sur les performances aux tâches de reconnaissance de mots et de patrons vibro-tactiles lorsque celles-ci sont effectuées sous des conditions de double tâche. Conformément aux études antérieures, les coefficients de corrélations effectuées à partir des données de l’Expérience 1 et de l’Expérience 2 soutiennent la notion que les mesures comportementales de double tâche et les réponses aux questionnaires évaluent différentes dimensions de l’effort associé à la reconnaissance de la parole. Comme l’effort associé à la perception de la parole repose sur des facteurs auditifs et cognitifs, une troisième étude fut complétée afin d’explorer si la mémoire auditive de travail contribue à expliquer la variance dans les données portant sur l’effort associé à la perception de la parole. De plus, ces analyses ont permis de comparer les patrons de réponses obtenues pour ces deux facteurs après des jeunes adultes et des personnes aînées. Pour les jeunes adultes, les résultats d’une analyse de régression séquentielle ont démontré qu’une mesure de la capacité auditive (taille de l’empan) était reliée à l’effort, tandis qu’une mesure du traitement auditif (rappel alphabétique) était reliée à la précision avec laquelle les mots étaient reconnus lorsqu’ils étaient présentés sous les conditions de double tâche. Cependant, ces mêmes relations n’étaient pas présentes dans les données obtenues pour le groupe de personnes aînées ni dans les données obtenues lorsque les tâches de reconnaissance de la parole étaient effectuées en modalité auditivo-visuelle. D’autres études sont nécessaires pour identifier les facteurs cognitifs qui sous-tendent l’effort associé à la perception de la parole, et ce, particulièrement chez les personnes aînées.
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds