976 resultados para user context
Resumo:
Future pervasive environments will take into consideration not only individual user’s interest, but also social relationships. In this way, pervasive communities can lead the user to participate beyond traditional pervasive spaces, enabling the cooperation among groups and taking into account not only individual interests, but also the collective and social context. Social applications in CSCW (Computer Supported Cooperative Work) field represent new challenges and possibilities in terms of use of social context information for adaptability in pervasive environments. In particular, the research describes the approach in the design and development of a context.aware framework for collaborative applications (CAFCA), utilizing user’s context social information for proactive adaptations in pervasive environments. In order to validate the proposed framework an evaluation was conducted with a group of users based on enterprise scenario. The analysis enabled to verify the impact of the framework in terms of functionality and efficiency in real-world conditions. The main contribution of this thesis was to provide a context-aware framework to support collaborative applications in pervasive environments. The research focused on providing an innovative socio-technical approach to exploit collaboration in pervasive communities. Finally, the main results reside in social matching capabilities for session formation, communication and coordinations of groupware for collaborative activities.
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
Designing for users rather than with users is still a common practice in technology design and innovation as opposed to taking them on board in the process. Design for inclusion aims to define and understand end-users, their needs, context of use, and, by doing so, ensure that end-users are catered for and included, while the results are geared towards universality of use. We describe the central role of end-user and designer participation, immersion and perspective to build user-driven solutions. These approaches provided a critical understanding of the counterpart role. Designer(s) could understand what the user’s needs were, experience physical impairments, and see from other’s perspective the interaction with the environment. Users could understand challenges of designing for physical impairments, build a sense of ownership with technology and explore it from a creative perspective. The understanding of the peer’s role (user and designer), needs and perspective enhanced user participation and inclusion.
Resumo:
Context: Mobile applications support a set of user-interaction features that are independent of the application logic. Rotating the device, scrolling, or zooming are examples of such features. Some bugs in mobile applications can be attributed to user-interaction features. Objective: This paper proposes and evaluates a bug analyzer based on user-interaction features that uses digital image processing to find bugs. Method: Our bug analyzer detects bugs by comparing the similarity between images taken before and after a user-interaction. SURF, an interest point detector and descriptor, is used to compare the images. To evaluate the bug analyzer, we conducted a case study with 15 randomly selected mobile applications. First, we identified user-interaction bugs by manually testing the applications. Images were captured before and after applying each user-interaction feature. Then, image pairs were processed with SURF to obtain interest points, from which a similarity percentage was computed, to finally decide whether there was a bug. Results: We performed a total of 49 user-interaction feature tests. When manually testing the applications, 17 bugs were found, whereas when using image processing, 15 bugs were detected. Conclusions: 8 out of 15 mobile applications tested had bugs associated to user-interaction features. Our bug analyzer based on image processing was able to detect 88% (15 out of 17) of the user-interaction bugs found with manual testing.
Resumo:
110 p.
Resumo:
With the rise of smart phones, lifelogging devices (e.g. Google Glass) and popularity of image sharing websites (e.g. Flickr), users are capturing and sharing every aspect of their life online producing a wealth of visual content. Of these uploaded images, the majority are poorly annotated or exist in complete semantic isolation making the process of building retrieval systems difficult as one must firstly understand the meaning of an image in order to retrieve it. To alleviate this problem, many image sharing websites offer manual annotation tools which allow the user to “tag” their photos, however, these techniques are laborious and as a result have been poorly adopted; Sigurbjörnsson and van Zwol (2008) showed that 64% of images uploaded to Flickr are annotated with < 4 tags. Due to this, an entire body of research has focused on the automatic annotation of images (Hanbury, 2008; Smeulders et al., 2000; Zhang et al., 2012a) where one attempts to bridge the semantic gap between an image’s appearance and meaning e.g. the objects present. Despite two decades of research the semantic gap still largely exists and as a result automatic annotation models often offer unsatisfactory performance for industrial implementation. Further, these techniques can only annotate what they see, thus ignoring the “bigger picture” surrounding an image (e.g. its location, the event, the people present etc). Much work has therefore focused on building photo tag recommendation (PTR) methods which aid the user in the annotation process by suggesting tags related to those already present. These works have mainly focused on computing relationships between tags based on historical images e.g. that NY and timessquare co-exist in many images and are therefore highly correlated. However, tags are inherently noisy, sparse and ill-defined often resulting in poor PTR accuracy e.g. does NY refer to New York or New Year? This thesis proposes the exploitation of an image’s context which, unlike textual evidences, is always present, in order to alleviate this ambiguity in the tag recommendation process. Specifically we exploit the “what, who, where, when and how” of the image capture process in order to complement textual evidences in various photo tag recommendation and retrieval scenarios. In part II, we combine text, content-based (e.g. # of faces present) and contextual (e.g. day-of-the-week taken) signals for tag recommendation purposes, achieving up to a 75% improvement to precision@5 in comparison to a text-only TF-IDF baseline. We then consider external knowledge sources (i.e. Wikipedia & Twitter) as an alternative to (slower moving) Flickr in order to build recommendation models on, showing that similar accuracy could be achieved on these faster moving, yet entirely textual, datasets. In part II, we also highlight the merits of diversifying tag recommendation lists before discussing at length various problems with existing automatic image annotation and photo tag recommendation evaluation collections. In part III, we propose three new image retrieval scenarios, namely “visual event summarisation”, “image popularity prediction” and “lifelog summarisation”. In the first scenario, we attempt to produce a rank of relevant and diverse images for various news events by (i) removing irrelevant images such memes and visual duplicates (ii) before semantically clustering images based on the tweets in which they were originally posted. Using this approach, we were able to achieve over 50% precision for images in the top 5 ranks. In the second retrieval scenario, we show that by combining contextual and content-based features from images, we are able to predict if it will become “popular” (or not) with 74% accuracy, using an SVM classifier. Finally, in chapter 9 we employ blur detection and perceptual-hash clustering in order to remove noisy images from lifelogs, before combining visual and geo-temporal signals in order to capture a user’s “key moments” within their day. We believe that the results of this thesis show an important step towards building effective image retrieval models when there lacks sufficient textual content (i.e. a cold start).
Resumo:
Measuring and fulfilling user requirements during medical device development will result in successful products that improve patient safety, improve device effectiveness and reduce product recalls and modifications. Medical device users are an extremely heterogeneous group and for any one device the users may include patients, their carers as well as various healthcare professionals. There are a number of factors that make capturing user requirements for medical device development challenging including the ethical and research governance involved with studying users as well as the inevitable time and financial constraints. Most ergonomics research methods have been developed in response to such practical constraints and a number of these have potential for medical device development. Some are suitable for specific points in the device cycle such as contextual inquiry and ethnography, others, such as usability tests and focus groups may be used throughout development. When designing user research there are a number of factors that may affect the quality of data collected including the sample of users studied, the use of proxies instead of real end-users and the context in which the research is performed. As different methods are effective in identifying different types of data, ideally more than one method should be used at each point in development, however financial and time factors may often constrain this.
Resumo:
199 p.
Resumo:
L’évaluation de l’action humanitaire (ÉAH) est un outil valorisé pour soutenir l’imputabilité, la transparence et l’efficience de programmes humanitaires contribuant à diminuer les inéquités et à promouvoir la santé mondiale. L’EAH est incontournable pour les parties prenantes de programme, les bailleurs de fonds, décideurs et intervenants souhaitant intégrer les données probantes aux pratiques et à la prise de décisions. Cependant, l’utilisation de l’évaluation (UÉ) reste incertaine, l’ÉAH étant fréquemment menée, mais inutilisé. Aussi, les conditions influençant l’UÉ varient selon les contextes et leur présence et applicabilité au sein d’organisations non-gouvernementales (ONG) humanitaires restent peu documentées. Les évaluateurs, parties prenantes et décideurs en contexte humanitaire souhaitant assurer l’UÉ pérenne détiennent peu de repères puisque rares sont les études examinant l’UÉ et ses conditions à long terme. La présente thèse tend à clarifier ces enjeux en documentant sur une période de deux ans l’UÉ et les conditions qui la détermine, au sein d’une stratégie d’évaluation intégrée au programme d’exemption de paiement des soins de santé d’une ONG humanitaire. L’objectif de ce programme est de faciliter l’accès à la santé aux mères, aux enfants de moins de cinq ans et aux indigents de districts sanitaires au Niger et au Burkina Faso, régions du Sahel où des crises alimentaires et économiques ont engendré des taux élevés de malnutrition, de morbidité et de mortalité. Une première évaluation du programme d’exemption au Niger a mené au développement de la stratégie d’évaluation intégrée à ce même programme au Burkina Faso. La thèse se compose de trois articles. Le premier présente une étude d’évaluabilité, étape préliminaire à la thèse et permettant de juger de sa faisabilité. Les résultats démontrent une logique cohérente et plausible de la stratégie d’évaluation, l’accessibilité de données et l’utilité d’étudier l’UÉ par l’ONG. Le second article documente l’UÉ des parties prenantes de la stratégie et comment celle-ci servit le programme d’exemption. L’utilisation des résultats fut instrumentale, conceptuelle et persuasive, alors que l’utilisation des processus ne fut qu’instrumentale et conceptuelle. Le troisième article documente les conditions qui, selon les parties prenantes, ont progressivement influencé l’UÉ. L’attitude des utilisateurs, les relations et communications interpersonnelles et l’habileté des évaluateurs à mener et à partager les connaissances adaptées aux besoins des utilisateurs furent les conditions clés liées à l’UÉ. La thèse contribue à l’avancement des connaissances sur l’UÉ en milieu humanitaire et apporte des recommandations aux parties prenantes de l’ONG.
Resumo:
The population of English Language Learners (ELLs) globally has been increasing substantially every year. In the United States alone, adult ELLs are the fastest growing portion of learners in adult education programs (Yang, 2005). There is a significant need to improve the teaching of English to ELLs in the United States and other English-speaking dominant countries. However, for many ELLs, speaking, especially to Native English Speakers (NESs), causes considerable language anxiety, which in turn plays a vital role in hindering their language development and academic progress (Pichette, 2009; Woodrow, 2006). Task-based Language Teaching (TBLT), such as simulation activities, has long been viewed as an effective approach for second-language development. The current advances in technology and rapid emergence of Multi-User Virtual Environments (MUVEs) have provided an opportunity for educators to consider conducting simulations online for ELLs to practice speaking English to NESs. Yet to date, empirical research on the effects of MUVEs on ELLs’ language development and speaking is limited (Garcia-Ruiz, Edwards, & Aquino-Santos, 2007). This study used a true experimental treatment control group repeated measures design to compare the perceived speaking anxiety levels (as measured by an anxiety scale administered per simulation activity) of 11 ELLs (5 in the control group, 6 in the experimental group) when speaking to Native English Speakers (NESs) during 10 simulation activities. Simulations in the control group were done face-to-face, while those in the experimental group were done in the MUVE of Second Life. The results of the repeated measures ANOVA revealed after the Huynh-Feldt epsilon correction, demonstrated for both groups a significant decrease in anxiety levels over time from the first simulation to the tenth and final simulation. When comparing the two groups, the results revealed a statistically significant difference, with the experimental group demonstrating a greater anxiety reduction. These results suggests that language instructors should consider including face-to-face and MUVE simulations with ELLs paired with NESs as part of their language instruction. Future investigations should investigate the use of other multi-user virtual environments and/or measure other dimensions of the ELL/NES interactions.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment (“relaxation” vs. “stress”) are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the “relaxation” vs. “stress” states.
Resumo:
An overview is given of a user interaction monitoring and analysis framework called BaranC. Monitoring and analysing human-digital interaction is an essential part of developing a user model as the basis for investigating user experience. The primary human-digital interaction, such as on a laptop or smartphone, is best understood and modelled in the wider context of the user and their environment. The BaranC framework provides monitoring and analysis capabilities that not only records all user interaction with a digital device (e.g. smartphone), but also collects all available context data (such as from sensors in the digital device itself, a fitness band or a smart appliances). The data collected by BaranC is recorded as a User Digital Imprint (UDI) which is, in effect, the user model and provides the basis for data analysis. BaranC provides functionality that is useful for user experience studies, user interface design evaluation, and providing user assistance services. An important concern for personal data is privacy, and the framework gives the user full control over the monitoring, storing and sharing of their data.
Resumo:
A comprehensive user model, built by monitoring a user's current use of applications, can be an excellent starting point for building adaptive user-centred applications. The BaranC framework monitors all user interaction with a digital device (e.g. smartphone), and also collects all available context data (such as from sensors in the digital device itself, in a smart watch, or in smart appliances) in order to build a full model of user application behaviour. The model built from the collected data, called the UDI (User Digital Imprint), is further augmented by analysis services, for example, a service to produce activity profiles from smartphone sensor data. The enhanced UDI model can then be the basis for building an appropriate adaptive application that is user-centred as it is based on an individual user model. As BaranC supports continuous user monitoring, an application can be dynamically adaptive in real-time to the current context (e.g. time, location or activity). Furthermore, since BaranC is continuously augmenting the user model with more monitored data, over time the user model changes, and the adaptive application can adapt gradually over time to changing user behaviour patterns. BaranC has been implemented as a service-oriented framework where the collection of data for the UDI and all sharing of the UDI data are kept strictly under the user's control. In addition, being service-oriented allows (with the user's permission) its monitoring and analysis services to be easily used by 3rd parties in order to provide 3rd party adaptive assistant services. An example 3rd party service demonstrator, built on top of BaranC, proactively assists a user by dynamic predication, based on the current context, what apps and contacts the user is likely to need. BaranC introduces an innovative user-controlled unified service model of monitoring and use of personal digital activity data in order to provide adaptive user-centred applications. This aims to improve on the current situation where the diversity of adaptive applications results in a proliferation of applications monitoring and using personal data, resulting in a lack of clarity, a dispersal of data, and a diminution of user control.
Resumo:
In rural and isolated areas without cellular coverage, Satellite Communication (SatCom) is the best candidate to complement terrestrial coverage. However, the main challenge for future generations of wireless networks will be to meet the growing demand for new services while dealing with the scarcity of frequency spectrum. As a result, it is critical to investigate more efficient methods of utilizing the limited bandwidth; and resource sharing is likely the only choice. The research community’s focus has recently shifted towards the interference management and exploitation paradigm to meet the increasing data traffic demands. In the Downlink (DL) and Feedspace (FS), LEO satellites with an on-board antenna array can offer service to numerous User Terminals (UTs) (VSAT or Handhelds) on-ground in FFR schemes by using cutting-edge digital beamforming techniques. Considering this setup, the adoption of an effective user scheduling approach is a critical aspect given the unusually high density of User terminals on the ground as compared to the on-board available satellite antennas. In this context, one possibility is that of exploiting clustering algorithms for scheduling in LEO MU-MIMO systems in which several users within the same group are simultaneously served by the satellite via Space Division Multiplexing (SDM), and then these different user groups are served in different time slots via Time Division Multiplexing (TDM). This thesis addresses this problem by defining a user scheduling problem as an optimization problem and discusses several algorithms to solve it. In particular, focusing on the FS and user service link (i.e., DL) of a single MB-LEO satellite operating below 6 GHz, the user scheduling problem in the Frequency Division Duplex (FDD) mode is addressed. The proposed State-of-the-Art scheduling approaches are based on graph theory. The proposed solution offers high performance in terms of per-user capacity, Sum-rate capacity, SINR, and Spectral Efficiency.
Resumo:
Frailty and anemia in the elderly appear to share a common pathophysiology associated with chronic inflammatory processes. This study uses an analytical, cross-sectional, population-based methodology to investigate the probable relationships between frailty, red blood cell parameters and inflammatory markers in 255 community-dwelling elders aged 65 years or older. The frailty phenotype was assessed by non-intentional weight loss, fatigue, low grip strength, low energy expenditure and reduced gait speed. Blood sample analyses were performed to determine hemoglobin level, hematocrit and reticulocyte count, as well as the inflammatory variables IL-6, IL-1ra and hsCRP. In the first multivariate analysis (model I), considering only the erythroid parameters, Hb concentration was a significant variable for both general frailty status and weight loss: a 1.0g/dL drop in serum Hb concentration represented a 2.02-fold increase (CI 1.12-3.63) in an individual's chance of being frail. In the second analysis (model II), which also included inflammatory cytokine levels, hsCRP was independently selected as a significant variable. Each additional year of age represented a 1.21-fold increase in the chance of being frail, and each 1-unit increase in serum hsCRP represented a 3.64-fold increase in the chance of having the frailty phenotype. In model II reticulocyte counts were associated with weight loss and reduced metabolic expenditure criteria. Our findings suggest that reduced Hb concentration, reduced RetAbs count and elevated serum hsCRP levels should be considered components of frailty, which in turn is correlated with sarcopenia, as evidenced by weight loss.