302 resultados para untargeted metabolomics
Resumo:
There is an increasing appreciation of the polymicrobial nature of bacterial infections associated with Cystic Fibrosis (CF) and of the important role for interactions in influencing bacterial virulence and response to therapy. Patients with CF are co-infected with Pseudomonas aeruginosa, Burkholderia cenocepacia and Stenotrophomonas maltophilia. These latter bacteria produce signal molecules of the diffusible signal factor (DSF) family, which are cis-2-unsaturated fatty acids. Previous studies showed that DSF from S. maltophilia leads to altered biofilm formation and increased tolerance to antibiotics in P. aeruginosa and that these responses require the P. aeruginosa sensor kinase PA1396. The work in this thesis aims of further elucidate the influence and mechanism of DSF signalling on P. aeruginosa and examine the role that such interspecies signalling play in infection of the CF airway. Next generation sequencing technologies targeting the 16S ribosomal RNA gene were applied to DNA and RNA isolated from sputum taken from cohorts of CF and non-CF subjects to characterise the bacterial community. In parallel, metabolomics analysis of sputum provided insight into the environment of the CF airway. This analysis revealed a number of observations including; that differences in metabolites occur in sputum taken from clinically stable CF patients and those with exacerbation and DNA- and RNA-based methods suggested that a strong relationship existed between the abundance of specific strict anaerobes and fluctuations in the level of metabolites during exacerbation. DSF family signals were also detected in the sputum and a correlation with the presence of DSFproducing organisms was observed. To examine the signal transduction mechanisms used by P. aeruginosa, bioinformatics with site directed mutagenesis were employed to identify signalling partners for PA1396. A pathway suggesting a role for a number of proteins in the regulation of several factors following DSF recognition by PA1396 were observed.
Resumo:
Understanding immune tolerance mechanisms is a major goal of immunology research, but mechanistic studies have generally required the use of mouse models carrying untargeted or targeted antigen receptor transgenes, which distort lymphocyte development and therefore preclude analysis of a truly normal immune system. Here we demonstrate an advance in in vivo analysis of immune tolerance that overcomes these shortcomings. We show that custom superantigens generated by single chain antibody technology permit the study of tolerance in a normal, polyclonal immune system. In the present study we generated a membrane-tethered anti-Igkappa-reactive single chain antibody chimeric gene and expressed it as a transgene in mice. B cell tolerance was directly characterized in the transgenic mice and in radiation bone marrow chimeras in which ligand-bearing mice served as recipients of nontransgenic cells. We find that the ubiquitously expressed, Igkappa-reactive ligand induces efficient B cell tolerance primarily or exclusively by receptor editing. We also demonstrate the unique advantages of our model in the genetic and cellular analysis of immune tolerance.
Resumo:
Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.
To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.
I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.
Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.
Resumo:
In this study data generated by H-1 NMR spectroscopy were combined with chemometrics to analyse beef samples aged over a 21 day period. In particular, the amino acids, of which 12 were identified were found to increase over the ageing period with samples matured for 3 days having notably lower concentrations than carcasses aged for 21 days. This is believed to be a result of increased proteolysis within the muscle. This novel approach of using high resolution NMR spectrometry to analyse beef samples has not previously been reported and these findings demonstrate the potential of this technique linked with HPLC to be used as a suitable method for profiling meat samples.
Resumo:
ABSTRACT Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques available to biology. This review is an introduction to the potential of this method and is aimed at readers who have little or no experience in acquiring or analyzing NMR spectra. We focus on spectroscopic applications of the magnetic resonance effect, rather than imaging ones, and explain how various aspects of the NMR phenomenon make it a versatile tool with which to address a number of biological problems. Using detailed examples, we discuss the use of 1H NMR spectroscopy in mixture analysis and metabolomics, the use of 13C NMR spectroscopy in tracking isotopomers and determining the flux through metabolic pathways (‘fluxomics’) and the use of 31P NMR spectroscopy in monitoring ATP generation and intracellular pH homeotasis in vivo. Further examples demonstrate how NMR spectroscopy can be used to probe the physical environment of a cell by measuring diffusion and the tumbling rates of individual metabolites and how it can determine macromolecular structures by measuring the bonds and distances which separate individual atoms. We finish by outlining some of the key challenges which remain in NMR spectroscopy and we highlight how recent advances— such as increased magnet field strengths, cryogenic cooling, microprobes and hyperpolarisation—are opening new avenues for today’s biological NMR spectroscopists.
Resumo:
A study combining high resolution mass spectrometry (liquid chromatography-quadrupole time-of-flight-mass spectrometry, UPLC-QTof-MS) and chemometrics for the analysis of post-mortem brain tissue from subjects with Alzheimer’s disease (AD) (n = 15) and healthy age-matched controls (n = 15) was undertaken. The huge potential of this metabolomics approach for distinguishing AD cases is underlined by the correct prediction of disease status in 94–97% of cases. Predictive power was confirmed in a blind test set of 60 samples, reaching 100% diagnostic accuracy. The approach also indicated compounds significantly altered in concentration following the onset of human AD. Using orthogonal partial least-squares discriminant analysis (OPLS-DA), a multivariate model was created for both modes of acquisition explaining the maximum amount of variation between sample groups (Positive Mode-R2 = 97%; Q2 = 93%; root mean squared error of validation (RMSEV) = 13%; Negative Mode-R2 = 99%; Q2 = 92%; RMSEV = 15%). In brain extracts, 1264 and 1457 ions of interest were detected for the different modes of acquisition (positive and negative, respectively). Incorporation of gender into the model increased predictive accuracy and decreased RMSEV values. High resolution UPLC-QTof-MS has not previously been employed to biochemically profile post-mortem brain tissue, and the novel methods described and validated herein prove its potential for making new discoveries related to the etiology, pathophysiology, and treatment of degenerative brain disorders.
Resumo:
Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.
Resumo:
Biomarkers are conventionally defined as "biological molecules that represent health and disease states." They typically are measured in readily available body fluids (blood or urine), lie outside the causal pathway, are able to detect subclinical disease, and are used to monitor clinical and subclinical disease burden and response to treatments. Biomarkers can be "direct" endpoints of the disease itself, or "indirect" or surrogate endpoints. New technologies (such as metabolomics, proteomics, genomics) bring a wealth of opportunity to develop new biomarkers. Other new technologies enable the development of nonmolecular, functional, or biophysical tissue-based biomarkers. Diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic ramifications extending far beyond impaired glucose metabolism. Biomarkers may reflect the presence and severity of hyperglycemia (ie, diabetes itself) or the presence and severity of the vascular complications of diabetes. Illustrative examples are considered in this brief review. In blood, hemoglobin A1c (HbA1c) may be considered as a biomarker for the presence and severity of hyperglycemia, implying diabetes or prediabetes, or, over time, as a "biomarker for a risk factor," ie, hyperglycemia as a risk factor for diabetic retinopathy, nephropathy, and other vascular complications of diabetes. In tissues, glycation and oxidative stress resulting from hyperglycemia and dyslipidemia lead to widespread modification of biomolecules by advanced glycation end products (AGEs). Some of these altered species may serve as biomarkers, whereas others may lie in the causal pathway for vascular damage. New noninvasive technologies can detect tissue damage mediated by AGE formation: these include indirect measures such as pulse wave analysis (a marker of vascular dysfunction) and more direct markers such as skin autofluorescence (a marker of long-term accumulation of AGEs). In the future, we can be optimistic that new blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.
Resumo:
OBJECTIVE:
"Blind" shoulder injections are often inaccurate and infiltrate untargeted structures. We tested a hypothesis that optimizing certain anatomical and positional factors would improve accuracy and reduce dispersal.
METHODS:
We evaluated one subacromial and one glenohumeral injection technique on cadavers.
RESULTS:
Mean accuracy was 91% for subacromial-targeted and 74 and 91% (worst- and best-case scenarios) for joint-targeted injections. Mean dispersal was 19% for subacromial-targeted and 16% for joint-targeted injections. All results bettered those reported previously.
CONCLUSION:
These "optimized" techniques might improve accuracy and limit dispersal of blind shoulder injections in clinical situations, benefiting efficacy and safety. However, evaluation is required in a clinical setting.
Resumo:
Refined vegetable oils are widely used in the food industry as ingredients or components in many processed food products in the form of oil blends. To date, the generic term 'vegetable oil' has been used in the labelling of food containing oil blends. With the introduction of new EU Regulation for Food Information (1169/2011) due to take effect in 2014, the oil species used must be clearly identified on the package and there is a need for development of fit for purpose methodology for industry and regulators alike to verify the oil species present in a product. The available methodologies that may be employed to authenticate the botanical origin of a vegetable oil admixture were reviewed and evaluated. The majority of the sources however, described techniques applied to crude vegetable oils such as olive oil due to the lack of refined vegetable oil focused studies. Nevertheless, DNA based typing methods and stable isotopes procedures were found not suitable for this particular purpose due to several issues. Only a small number of specific chromatographic and spectroscopic fingerprinting methods in either targeted or untargeted mode were found to be applicable in potentially providing a solution to this complex authenticity problem. Applied as a single method in isolation, these techniques would be able to give limited information on the oils identity as signals obtained for various oil types may well be overlapping. Therefore, more complex and combined approaches are likely to be needed to identify the oil species present in oil blends employing a stepwise approach in combination with advanced chemometrics. Options to provide such a methodology are outlined in the current study.
Resumo:
Brain tissue from so-called Alzheimer's disease (AD) mouse models has previously been examined using H-1 NMR-metabolomics, but comparable information concerning human AD is negligible. Since no animal model recapitulates all the features of human AD we undertook the first H-1 NMR-metabolomics investigation of human AD brain tissue. Human post-mortem tissue from 15 AD subjects and 15 age-matched controls was prepared for analysis through a series of lyophilised, milling, extraction and randomisation steps and samples were analysed using H-1 NMR. Using partial least squares discriminant analysis, a model was built using data obtained from brain extracts. Analysis of brain extracts led to the elucidation of 24 metabolites. Significant elevations in brain alanine (15.4 %) and taurine (18.9 %) were observed in AD patients (p ≤ 0.05). Pathway topology analysis implicated either dysregulation of taurine and hypotaurine metabolism or alanine, aspartate and glutamate metabolism. Furthermore, screening of metabolites for AD biomarkers demonstrated that individual metabolites weakly discriminated cases of AD [receiver operating characteristic (ROC) AUC <0.67; p < 0.05]. However, paired metabolites ratios (e.g. alanine/carnitine) were more powerful discriminating tools (ROC AUC = 0.76; p < 0.01). This study further demonstrates the potential of metabolomics for elucidating the underlying biochemistry and to help identify AD in patients attending the memory clinic
Resumo:
Intake of heterocyclic amines (HCAs, carcinogens produced during cooking of meat/fish, the most abundant being PhIP, DiMeIQx and MeIQx) is influenced by many factors including type/thickness of meat and cooking method/temperature/duration. Thus, assessment of HCA dietary exposure is difficult. Protein adducts of HCAs have been proposed as potential medium-term biomarkers of exposure, e.g. PhIP adducted to serum albumin or haemoglobin. However, evidence is still lacking that HCA adducts are viable biomarkers in humans consuming normal diets. The FoodCAP project, supported by World Cancer Research Fund, developed a highly sensitive mass spectrometric method for hydrolysis, extraction and detection of acid-labile HCAs in blood and assessed their validity as biomarkers of exposure. Multiple acid/alkaline hydrolysis conditions were assessed, followed by liquid-liquid extraction, clean-up by cation-exchange SPE and quantification by UPLC-ESI-MS/ MS. Blood was analysed from volunteers who completed food diaries to estimate HCA intake based on the US National Cancer Institute’s CHARRED database. Standard HCAs were recovered quantitatively from fortified blood. In addition, PhIP/MeIQx adducts bound to albumin and haemoglobin prepared in vitro using a human liver microsome system were also detectable in blood fortified at low ppt concentrations. However, except for one sample (5pg/ml PhIP), acid-labile PhIP, 7,8-DiMeIQx, 4,8-DiMeIQx and MeIQx were not observed above the 2pg/ml limit of detection in plasma (n=35), or in serum, whole blood or purified albumin, even in volunteers with high meat consumption (nominal HCA intake >2µg/day). It is concluded that HCA blood protein adducts are not viable biomarkers of exposure. Untargeted metabolomic analyses may facilitate discovery of suitable markers.
Resumo:
Bovine Respiratory Disease (BRD) is considered to be one of the most significant causes of economic loss in cattle worldwide. The disease has multifactorial aetiology, where viral induced respiratory damage can predispose animals to developing secondary bacterial infections. Accurate identification of viral infected animals prior to the onset of bacterial infection is necessary to reduce the overuse of antimicrobial treatments and minimize further economic losses from reduced production capacity and death. This research focuses on Bovine Parainfluenza Virus Type 3 (BPIV-3), one of the viruses involved in generating BRD. Vaccination measures for BPIV-3 can induce a level of immunity preventing disease progression, however, not all animals respond equally and immunization can complicate disease diagnosis. Alternative diagnostic approaches are required to identify animals which fail to respond to vaccination during infection outbreaks and are therefore likely to be more susceptible to secondary bacterial infections. Mass spectrometry based metabolomics was employed to identify plasma markers capable of differentiating between vaccinated and non-vaccinated calves after challenge with BPIV-3. Differentiation of vaccinated and non-vaccinated study groups (n=6) was possible as early as day 2 post-BPIV-3 challenge up until day 20 using a panel of potential metabolite markers. This study illustrates the potential for metabolomics to provide more detailed information on animal vaccination status that could be used to develop tools for improved herd health management, reduce economic loss through rapid identification and isolation of animals without immune protection (improving herd level immunity) and help reduce the usage of antimicrobial therapeutic treatments in animals.
Resumo:
Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.