989 resultados para traffic safety
Resumo:
The concepts of traffic safety culture and climate hold considerable impact on road safety outcomes. Data sourced from four Australian organisations revealed a five factor structure that was consistent with previous research, which were: management commitment; work demands; relationships; appropriateness of rules; and communication. Correlation and regression analyses were conducted to identify which aspects of fleet safety climate were related to driver behaviours. The findings suggest that organisations may be able to reduce the likelihood of employees engaging in unsafe driving behaviours as a result of fatigue or distractions through increasing aspects of fleet safety climate, including: management commitment; level of trust; safety communication; appropriateness of work demands; and appropriateness of safety policies and procedures. To assist practitioners in enhancing fleet safety climate and managing occupational road risks, recommendations are made based on these findings, such as fostering a supportive environment of mutual responsibility.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.
Resumo:
Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.
Resumo:
The historically-reactive approach to identifying safety problems and mitigating them involves selecting black spots or hot spots by ranking locations based on crash frequency and severity. The approach focuses mainly on the corridor level without taking the exposure rate (vehicle miles traveled) and socio-demographics information of the study area, which are very important in the transportation planning process, into consideration. A larger study analysis unit at the Transportation Analysis Zone (TAZ) level or the network planning level should be used to address the needs of development of the community in the future and incorporate safety into the long-range transportation planning process. In this study, existing planning tools (such as the PLANSAFE models presented in NCHRP Report 546) were evaluated for forecasting safety in small and medium-sized communities, particularly as related to changes in socio-demographics characteristics, traffic demand, road network, and countermeasures. The research also evaluated the applicability of the Empirical Bayes (EB) method to network-level analysis. In addition, application of the United States Road Assessment Program (usRAP) protocols at the local urban road network level was investigated. This research evaluated the applicability of these three methods for the City of Ames, Iowa. The outcome of this research is a systematic process and framework for considering road safety issues explicitly in the small and medium-sized community transportation planning process and for quantifying the safety impacts of new developments and policy programs. More specifically, quantitative safety may be incorporated into the planning process, through effective visualization and increased awareness of safety issues (usRAP), the identification of high-risk locations with potential for improvement, (usRAP maps and EB), countermeasures for high-risk locations (EB before and after study and PLANSAFE), and socio-economic and demographic induced changes at the planning-level (PLANSAFE).
Resumo:
The automatic interpretation of conventional traffic signs is very complex and time consuming. The paper concerns an automatic warning system for driving assistance. It does not interpret the standard traffic signs on the roadside; the proposal is to incorporate into the existing signs another type of traffic sign whose information will be more easily interpreted by a processor. The type of information to be added is profuse and therefore the most important object is the robustness of the system. The basic proposal of this new philosophy is that the co-pilot system for automatic warning and driving assistance can interpret with greater ease the information contained in the new sign, whilst the human driver only has to interpret the "classic" sign. One of the codings that has been tested with good results and which seems to us easy to implement is that which has a rectangular shape and 4 vertical bars of different colours. The size of these signs is equivalent to the size of the conventional signs (approximately 0.4 m2). The colour information from the sign can be easily interpreted by the proposed processor and the interpretation is much easier and quicker than the information shown by the pictographs of the classic signs
Resumo:
In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes.
Resumo:
Road accidents cause more deaths than homicides in Latin America, nevertheless it is not highlighted as a major concern by media and society. World Health Organization put this issue in high priority by releasing the Decade of Action in Road Safety that establishes five pillars to guide national road safety plans and activities. This paper addresses the drawbacks in the implementation of these actions in Latin American countries and its implications to achieve a sustainable development. The main concerns are: lack of empowerment of the road safety management organisations; lower vehicular standards; corruption related to the enforcement of traffic safety laws to and to the construction of safer roads; absence of safety vehicular inspections; vehicle fleet increase, decrease of public transportation demand; and the absence of a safety culture. Without facing these problems, sustainable development in Latin America will be impaired, once road safety is a fundamental link to achieve sustainability.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Traffic Records, Washington, D.C.
Resumo:
Oregon Department of Transportation, Salem
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.