962 resultados para traffic flow stability
Resumo:
Mathematical models and the involved methods applied to real contexts are essential tools for designing and evaluating solutions concerning physical elements and/or organizational components of transportation systems. To deal with this, the systems engineering approach is used, which considers the relationships among the transportation system elements and their performances. This approach allows quantifying the effects of transportation projects by taking into account the intrinsic complexity of the transportation system and then assessing the effects of solutions to solve – or mitigate – transportation problems. This thesis focuses on the application of the transport system engineering approach to a real city – Bologna, in northern Italy – in order to: 1. simulate the current transportation system conditions (status quo); 2. compare and assess the results obtained by two different approaches for simulating the link traffic flows on the road transportation network and their related impacts (externalities) 3. identify potential solutions to solve critical aspects, particularly in terms of traffic flow congestion and related environmental impacts (findings)
Resumo:
A general transition criterion is proposed in order to locate the core-annular flow pattern in horizontal and vertical oil-water flows. It is based on a rigorous one-dimensional two-fluid model of liquid-liquid two-phase flow and considers the existence of critical interfacial wave numbers related to a non-negligible interfacial tension term to which the linear stability theory still applies. The viscous laminar-laminar flow problem is fully resolved and turbulence effects on the stability are analyzed through experimentally obtained shape factors. The proposed general transition criterion includes in its formulation the inviscid Kelvin-Helmholtz`s discriminator. If a theoretical maximum wavelength is considered as a necessary condition for stability, a stability criterion in terms of the Eotvos number is achieved. Effects of interfacial tension, viscosity ratio, density difference, and shape factors on the stability of core-annular flow are analyzed in detail. The more complete modeling allowed for the analysis of the neutral-stability wave number and the results strongly suggest that the interfacial tension term plays an indispensable role in the correct prediction of the stable region of core-annular flow pattern. The incorporation of a theoretical minimum wavelength into the transition model produced significantly better results. The criterion predictions were compared with recent data from the literature and the agreement is encouraging. (C) 2007 American Institute of Chemical Engineers.
Resumo:
This investigative work is concerned with the flow around a circular cylinder submitted to forced transverse oscillations. The goal is to investigate how the transition to turbulence is initiated in the wake for cases with different Reynolds numbers (Re) and displacement amplitudes (A). For each Re the motion frequency is kept constant, close to the Strouhal number of the flow around a fixed cylinder at the same Re. Stability analysis of two-dimensional periodic flows around a forced-oscillating cylinder is carried out with respect to three-dimensional infinitesimal perturbations. The procedure consists of performing a Floquet type analysis of time-periodic base flows, computed using the spectral/hp element method. With the results of the Floquet calculations, considerations regarding the stability of the system are drawn, and the form of the instability at its onset is obtained. The critical Reynolds number is observed to change with the amplitude of oscillation. With respect to instabilities, unstable modes with the same symmetry as mode A of a fixed cylinder are observed; however, they present different wavelengths. Also, the instabilities observed for the oscillating cylinder are distinctively stronger in the braid shear layers. Other unstable modes similar to mode B are found. Quasi-periodic modes are observed in the 2S wake, and subharmonic mode occurrences are reported in P + S wakes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
21st Annual Conference of the International Group for Lean Construction – IGLC 21 – Fortaleza, Brazil
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Univ., Dissertation, 2015
Resumo:
We argue the importance both of developing simple sufficientconditions for the stability of general multiclass queueing networks and also of assessing such conditions under a range of assumptions on the weight of the traffic flowing between service stations. To achieve the former, we review a peak-rate stability condition and extend its range of application and for the latter, we introduce a generalisation of the Lu-Kumar network on which the stability condition may be tested for a range of traffic configurations. The peak-rate condition is close to exact when the between-station traffic is light, but degrades as this traffic increases.
Resumo:
Nonlinear stability theorems analogous to Arnol'd's second stability theorem are established for continuously stratified quasi-geostrophic flow with general nonlinear boundary conditions in a vertically and horizontally confined domain. Both the standard quasi-geostrophic model and the modified quasi-geostrophic model (incorporating effects of hydrostatic compressibility) are treated. The results establish explicit upper bounds on the disturbance energy, the disturbance potential enstrophy, and the disturbance available potential energy on the horizontal boundaries, in terms of the initial disturbance fields. Nonlinear stability in the sense of Liapunov is also established.
Resumo:
New nonlinear stability theorems are derived for disturbances to steady basic flows in the context of the multilayer quasi-geostrophic equations. These theorems are analogues of Arnol’d's second stability theorem, the latter applying to the two-dimensional Euler equations. Explicit upper bounds are obtained on both the disturbance energy and disturbance potential enstrophy in terms of the initial disturbance fields. An important feature of the present analysis is that the disturbances are allowed to have non-zero circulation. While Arnol’d's stability method relies on the energy–Casimir invariant being sign-definite, the new criteria can be applied to cases where it is sign-indefinite because of the disturbance circulations. A version of Andrews’ theorem is established for this problem, and uniform potential vorticity flow is shown to be nonlinearly stable. The special case of two-layer flow is treated in detail, with particular attention paid to the Phillips model of baroclinic instability. It is found that the short-wave portion of the marginal stability curve found in linear theory is precisely captured by the new nonlinear stability criteria.
Resumo:
Arnol'd's second hydrodynamical stability theorem, proven originally for the two-dimensional Euler equations, can establish nonlinear stability of steady flows that are maxima of a suitably chosen energy-Casimir invariant. The usual derivations of this theorem require an assumption of zero disturbance circulation. In the present work an analogue of Arnol'd's second theorem is developed in the more general case of two-dimensional quasi-geostrophic flow, with the important feature that the disturbances are allowed to have non-zero circulation. New nonlinear stability criteria are derived, and explicit bounds are obtained on both the disturbance energy and potential enstrophy which are expressed in terms of the initial disturbance fields. While Arnol'd's stability method relies on the second variation of the energy-Casimir invariant being sign-definite, the new criteria can be applied to cases where the second variation is sign-indefinite because of the disturbance circulations. A version of Andrews' theorem is also established for this problem.
Resumo:
A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.
Resumo:
This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.
Resumo:
Il presente lavoro tratta la stabilità del fronte di scavo, rinforzato con barre di consolidamento ed interessato da drenaggi in avanzamento, di gallerie sotto falda in rocce tenere o terreni. Tale studio è stato sviluppato dal progetto di Tesi attraverso l’analisi all’equilibrio limite che approssima il fronte di scavo con un rettangolo e considera un meccanismo di rottura composto da un cuneo, a tergo del fronte, caricato da un prisma. Il metodo descritto consente di tenere conto dell’effetto stabilizzante delle barre, mediante una distribuzione della pressione di supporto non uniforme. Nel caso di gallerie sotto falda, lo stesso metodo permette inoltre di considerare l’effetto destabilizzante dei gradienti idraulici. Sono state ricavate soluzioni analitiche per la valutazione della stabilità, ed implementate successivamente nel software di analisi numerica MATLAB. Dalle analisi condotte è emerso che il numero minimo di barre per garantire la stabilità del fronte di scavo è in molti casi elevato e risulta impossibile da porre in opera in terreni scarsamente coesivi o in gallerie sotto elevati battenti d’acqua. Per risolvere questa situazione si può prevedere l’inserimento di drenaggi in avanzamento, con lo scopo di diminuire i gradienti idraulici nei pressi del fronte della galleria. Il modello che descrive il nuovo andamento dei carichi idraulici, considerando la presenza di dreni, è stato realizzato con il software commerciale agli elementi finiti COMSOL. Una volta determinati gli andamenti dei carichi idraulici, sono stati condotti studi parametrici sull’effetto dei dreni combinato con gli elementi di rinforzo. Dopo tali analisi sono stati ricavati nomogrammi adimensionali che tengano conto della presenza contemporanea delle barre e dei dreni. Tali diagrammi costituiscono uno strumento utile e valido per la progettazione del rinforzo del fronte di scavo. Infine sono stati realizzati confronti fra casi di studio reali e risultati ottenuti dal modello.
Resumo:
We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.