956 resultados para tracer
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
Resumo:
This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, and it quantifies school children’s personal exposure to UF particles, in terms of number, using Philips Aerasense Nano Tracers (NTs). This study is being conducted in conjunction with the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)” project, which aims to determine the relationship between exposure to traffic related UF particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20 Home.htm). To achieve this, air quality and some health data are being collected at 25 schools within the Brisbane Metropolitan Area in Australia over two years. The school children’s personal exposure to UF particles in the first 17 schools are presented here. These schools were tested between Oct 2010 and Dec 2011. Data collection is expected to be complete by mid 2012.
Resumo:
This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, especially for children (Mejía et al. 2011). Most research efforts in the past have investigated particle mass concentration and only a limited number of studies have been conducted to quantify other particle metrics, such as particle number, in the classrooms and school microenvironment in general (Diapouli et al. 2008; Guo et al. 2008; Weichenthal et al. 2008; Mullen et al. 2011).
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.
Resumo:
Abstract An experimental dataset representing a typical flow field in a stormwater gross pollutant trap (GPT) was visualised. A technique was developed to apply the image-based flow visualisation (IBFV) algorithm to the raw dataset. Particle image velocimetry (PIV) software was previously used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding stormwater pollutant capture and retention behaviour within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate the possible flow paths of pollutants entering the GPT. The investigated flow paths were compared with the behaviour of pollutants monitored during experiments.
Resumo:
This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulfur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng.m-3 (87%) higher than the average for all wind directions and 0.83 ng.m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.
Resumo:
Exhaust emissions from motor vehicles vary widely and depend on factors such as engine operating conditions, fuel, age, mileage and service history. A method has been devised to rapidly identify high-polluting vehicles as they travel on the road. The method is able to monitor emissions from a large number of vehicles in a short time and avoids the need to conduct expensive and time consuming tests on chassis dynamometers. A sample of the exhaust plume is captured as each vehicle passes a roadside monitoring station and the pollutant emission factors are calculated from the measured concentrations using carbon dioxide as a tracer. Although, similar methods have been used to monitor soot and gaseous mass emissions, to-date it has not been used to monitor particle number emissions from a large fleet of vehicles. This is particularly important as epidemiological studies have shown that particle number concentration is an important parameter in determining adverse health effects. The method was applied to measurements of particle number emissions from individual buses in the Brisbane City Council diesel fleet operating on the South-East Busway. Results indicate that the particle number emission factors are gamma- distributed, with a high proportion of the emissions being emitted by a small percentage of the buses. Although most of the high-emitters are the oldest buses in the fleet, there are clear exceptions, with some newer buses emitting as much. We attribute this to their recent service history, particularly pertaining to improper tuning of the engines. We recommend that a targeted correction program would be a highly effective measure in mitigating urban environmental pollution.
Resumo:
This research measured particle and gaseous emissions from ships and trains operating within the Port of Brisbane, and explored their influence on ambient air composition at a downwind suburban measurement site. The ship and train emission factor investigations resulted in the development of novel measurement techniques which permit the quantification of particle and gaseous emission factors using samples collected from post-emission exhaust plumes. The urban influence investigation phase of the project produced a new approach to identifying influences from ship emissions.
Resumo:
A multi-season 15N tracer recovery experiment was conducted on an Oxisol cropped with wheat, maize and sorghum to compare crop N recoveries of different fertilisation strategies and determine the main pathways of N losses that limit N recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled fertiliser was applied as conventional urea (CONV) and urea coated with a nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was monitored in this crop following a legume ley pasture (L70) or a grass ley pasture (G100). The fertiliser N applied to sorghum in the legume-cereal rotation was reduced (70 kg N ha−1) compared to the grass-cereal (100 kg N ha−1) to assess the availability of the N residual from the legume ley pasture. Average crop N recoveries were 73 % (CONV) and 77 % (DMPP) in wheat and 50 % (CONV) and 51 % (DMPP) in maize, while in sorghum were 71 % (L70) and 53 % (G100). Data gathered in this study indicate that the intrinsic physical and chemical conditions of Oxisols can be extremely effective in limiting N losses via deep leaching or denitrification. Elevated crop 15N recoveries can be therefore obtained in subtropical Oxisols using conventional urea while in these agroecosystems DMPP urea has no significant scope to increase fertiliser N recovery in the crop. Overall, introducing a legume phase to limit the fertiliser N requirements of the following cereal crop proved to be the most effective strategy to reduce N losses and increase fertiliser N recovery.
Resumo:
Successful prediction of groundwater flow and solute transport through highly heterogeneous aquifers has remained elusive due to the limitations of methods to characterize hydraulic conductivity (K) and generate realistic stochastic fields from such data. As a result, many studies have suggested that the classical advective-dispersive equation (ADE) cannot reproduce such transport behavior. Here we demonstrate that when high-resolution K data are used with a fractal stochastic method that produces K fields with adequate connectivity, the classical ADE can accurately predict solute transport at the macrodispersion experiment site in Mississippi. This development provides great promise to accurately predict contaminant plume migration, design more effective remediation schemes, and reduce environmental risks. Key Points Non-Gaussian transport behavior at the MADE site is unraveledADE can reproduce tracer transport in heterogeneous aquifers with no calibrationNew fractal method generates heterogeneous K fields with adequate connectivity
Resumo:
The use of GNSS tracked Lagrangian drifters allows more realistic quantification of fluid motion and dispersion coefficients than Eulerian techniques because such drifters are analogues of particles that are relevant to flow field characterisation and pollutant dispersion. Using the fast growing Real Time Kinematic (RTK) positioning technique derived from Global Satellite Navigation Systems (GNSS), drifters are developed for high frequency (10 Hz) sampling with position estimates to centimetre accuracy. The drifters are designed with small size and less direct wind drag to follow the sub-surface flow which characterizes dispersion in shallow waters. An analysis of position error from stationary observation indicates that the drifter can efficiently resolve motion up to 1 Hz. The result of the field deployments of the drifter in conjunction with acoustic Eulerian devices shows higher estimate of the drifter streamwise velocities. Single particle statistical analysis of field deployments in a shallow estuarine zone yielded dispersion coefficients estimate comparable to those of dye tracer studies. The drifters capture the tidal elevation during field studies in a tidal estuary.
Resumo:
Metabolic imaging using positron emission tomography (PET) has found increasing clinical use for the management of infiltrating tumours such as glioma. However, the heterogeneous biological nature of tumours and intrinsic treatment resistance in some regions means that knowledge of multiple biological factors is needed for effective treatment planning. For example, the use of 18F-FDOPA to identify infiltrative tumour and 18F-FMISO for localizing hypoxic regions. Performing multiple PET acquisitions is impractical in many clinical settings, but previous studies suggest multiplexed PET imaging could be viable. The fidelity of the two signals is affected by the injection interval, scan timing and injected dose. The contribution of this work is to propose a framework to explicitly trade-off signal fidelity with logistical constraints when designing the imaging protocol. The particular case of estimating 18F-FMISO from a single frame prior to injection of 18F-FDOPA is considered. Theoretical experiments using simulations for typical biological scenarios in humans demonstrate that results comparable to a pair of single-tracer acquisitions can be obtained provided protocol timings are carefully selected. These results were validated using a pre-clinical data set that was synthetically multiplexed. The results indicate that the dual acquisition of 18F-FMISO and 18F-FDOPA could be feasible in the clinical setting. The proposed framework could also be used to design protocols for other tracers.
Resumo:
The micro paddy lysimeter (MPL) was developed and evaluated for its performance to simulate solute transport in paddy environment under laboratory conditions. MPLs were constructed using soil collected from Field Museum Honmachi of Tokyo University of Agriculture and Technology, Japan. For the physical characteristics of the hardpan layer, parameters such as thickness, and soil aggregate size, affecting the percolation rate were studied. For the plow layer, two types of plow soils, sieved and un-sieved soils were compared. The sieved soil plow layer was produced by mixing air-dried soils of different aggregate sizes of D > 9.50, 9.50 ≥ D > 4.75, 4.75 ≥ D > 2.0 mm and D ≤ 2.0 mm at 47.1, 19.5, 20.6, and 12.8%, respectively. The un-sieved plow layer soil was directly used after collecting from the field. Inert tracer was applied to ponding water with controlled boundary conditions to evaluate the reproducibility of the soil hydraulic characteristics. HYDRUS-1D was used to evaluate the movement of bromide tracer in the MPL. The proposed conditions of the MPL were that the hardpan layer can be made from soil aggregates smaller than 0.425 mm with 2 cm thickness and that the plow layer can be prepared with sieved or un-sieved soils. With these conditions, the obtained results proved that MPLs can be a useful tool to simulate solute transport in paddy environment.
Resumo:
Diffusion such is the integrated diffusion coefficient of the phase, the tracer diffusion coefficient of species at different temperatures and the activation energy for diffusion, are determined in V3Si phase with A15 crystal structure. The tracer diffusion coefficient of Si Was found to be negligible compared to the tracer diffusion coefficient of V. The calculated diffusion parameters will help to validate the theoretical analysis of defect structure of the phase, which plays an important role in the superconductivity.