959 resultados para time domain reflectometry
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Resumo:
Background: Hypertension, diabetes and obesity are not isolated findings, but a series of interacting interactive physiologic derangements. Taking into account genetic background and lifestyle behavior, AI (autonomic imbalance) could be a common root for RHTN (resistant hypertension) or RHTN plus type 2 diabetes (T2D) comorbidity development. Moreover, circadian disruption can lead to metabolic and vasomotor impairments such as obesity, insulin resistance and resistant hypertension. In order to better understand the triggered emergence of obesity and T2D comorbidity in resistant hypertension, we investigated the pattern of autonomic activity in the circadian rhythm in RHTN with and without type 2 diabetes (T2D), and its relationship with serum adiponectin concentration. Methods: Twenty five RHTN patients (15 non-T2D and 10 T2D, 15 males, 10 females; age range 34 to 70 years) were evaluated using the following parameters: BMI (body mass index), biochemical analysis, serum adiponectinemia, echocardiogram and ambulatory electrocardiograph heart rate variability (HRV) in time and frequency domains stratified into three periods: 24 hour, day time and night time. Results: Both groups demonstrated similar characteristics despite of the laboratory analysis concerning T2D like fasting glucose, HbA1c levels and hypertriglyceridemia. Both groups also revealed disruption of the circadian rhythm: inverted sympathetic and parasympathetic tones during day (parasympathetic > sympathetic tone) and night periods (sympathetic > parasympathetic tone). T2D group had increased BMI and serum triglyceride levels (mean 33.7 +/- 4.0 vs 26.6 +/- 3.7 kg/m(2) - p = 0.00; 254.8 +/- 226.4 vs 108.6 +/- 48.7 mg/dL - p = 0.04), lower levels of adiponectin (6729.7 +/- 3381.5 vs 10911.5 +/- 5554.0 ng/mL - p = 0.04) and greater autonomic imbalance evaluated by HRV parameters in time domain compared to non-T2D RHTN patients. Total patients had HRV correlated positively with serum adiponectin (r = 0.37 [95% CI - 0.04 - 1.00] p = 0.03), negatively with HbA1c levels (r = -0.58 [95% CI -1.00 - -0.3] p = 0.00) and also adiponectin correlated negatively with HbA1c levels (r = -0.40 [95% CI -1.00 - -0.07] p = 0.02). Conclusion: Type 2 diabetes comorbidity is associated with greater autonomic imbalance, lower adiponectin levels and greater BMI in RHTN patients. Similar circadian disruption was also found in both groups indicating the importance of lifestyle behavior in the genesis of RHTN.
Resumo:
We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.
Resumo:
We study the massless scalar, Dirac, and electromagnetic fields propagating on a 4D-brane, which is embedded in higher-dimensional Gauss-Bonnet space-time. We calculate, in the time domain, the fundamental quasinormal modes of a spherically symmetric black hole for such fields. Using WKB approximation we study quasinormal modes in the large multipole limit. We observe also a universal behavior, independent on a field and value of the Gauss-Bonnet parameter, at an asymptotically late time.
Resumo:
We assess the performance of three unconditionally stable finite-difference time-domain (FDTD) methods for the modeling of doubly dispersive metamaterials: 1) locally one-dimensional FDTD; 2) locally one-dimensional FDTD with Strang splitting; and (3) alternating direction implicit FDTD. We use both double-negative media and zero-index media as benchmarks.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
This paper presents the results of the in-depth study of the Barkhausen effect signal properties for the plastically deformed Fe-2%Si samples. The investigated samples have been deformed by cold rolling up to plastic strain epsilon(p) = 8%. The first approach consisted of time-domain-resolved pulse and frequency analysis of the Barkhausen noise signals whereas the complementary study consisted of the time-resolved pulse count analysis as well as a total pulse count. The latter included determination of time distribution of pulses for different threshold voltage levels as well as the total pulse count as a function of both the amplitude and the duration time of the pulses. The obtained results suggest that the observed increase in the Barkhausen noise signal intensity as a function of deformation level is mainly due to the increase in the number of bigger pulses.
Resumo:
The aim of this work was to study the behaviour of conventional spouted beds during water evaporation and to analyze the pressure fluctuations at the maximum water evaporative capacity for different bed heights and air flow rates. The results showed that spout pressure drop could not indicate the proximity of maximum evaporative capacity; however this condition is denoted by a minimum in fountain height. The standard deviation and amplitude of the pressure fluctuations also showed a minimum point at the maximum water evaporation capacity. The frequency domain analysis of pressure fluctuations revealed that the dry bed has a dominant frequency varying from 6 to 8.2 Hz and that the peak of dominant frequency tends to disappear with the increase in water feed rate.
Resumo:
Transient response of an adsorbing or non-adsorbing tracer injected as step or square pulse input in a diffusion cell with two flowing streams across the pellet is theoretically investigated in this paper. Exact solutions and the asymptotic solutions in the time domain and in three different limits are obtained by using an integral transform technique and a singular perturbation technique, respectively. Parametric dependence of the concentrations in the top and bottom chambers can be revealed by investigating the asymptotic solutions, which are far simpler than their exact counterpart. In the time domain investigation, it is found that the bottom-chamber concentration is very sensitive to the value of the macropore effective diffusivity. Therefore this concentration could be used to extract diffusivity by fitting in the time domain. The bottom-chamber concentration is also sensitive to flow rate, pellet length chamber volume and the type of input (step and square input).
Resumo:
It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.
Resumo:
Obesity is associated with increased sympathetic activity and higher mortality. Treatment of this condition is often frustrating. Roux-en-Y gastric bypass is the most effective technique nowadays for treatment of obesity. The aim of the present study is to assess the effects of this surgery on the cardiac autonomic activity, including the influence of gender and age, through heart rate variability (HRV) analysis. The study group consisted of 71 obese patients undergoing gastric bypass. Time domain measures of HRV, obtained from 24-h Holter recordings, were evaluated before and 6 months after surgery, and the results were compared. Percentage of interval differences of successive normal sinus beats greater than 50 ms (pNN50) and square root of the mean squared differences of successive normal sinus beat intervals (rMSSD) was used to estimate the short-term components of HRV, related to the parasympathetic activity. Standard deviation of intervals between all normal sinus beats (SDNN) was related to overall HRV. SDNN, pNN50, and rMSSD showed significant increase 6 months after surgery (p < 0.001, p = 0.001 and p = 0.002, respectively). Men presented a greater increase of SDNN than women (p = 0.006) during the follow-up. There was a difference in rMSSD evolution for age groups (p = 0.002). Only younger patients presented significant increase of rMSSD. Overall HRV increased 6 months after surgery; this increase was more evident in men. Cardiac parasympathetic activity increased also, but in younger patients only.
Resumo:
Background: The relation between left ventricular filing velocities determined by Doppler echocardiography and autonomic nervous system function assessed by heart rate variability (HRV) is unclear. The aim of this study was to evaluate the influence of the autonomic nervous system assessed by the time and frequency domain indices of HRV in the Doppler indices of left ventricular diastolic filling velocities in patients without heart disease. Methods: We studied 451 healthy individuals (255 female [56.4%]) with normal blood pressure, electrocardiogram, chest x-ray, and treadmill electrocardiographic exercise stress test results, with a mean age of 43 +/- 12 (range 15-82) years, who underwent transthoracic Doppler echocardiography and 24-hour electrocardiographic ambulatory monitoring. We studied indices of HRV on time (standard deviation [SD] of all normal sinus RR intervals during 24 hours, SD of averaged normal sinus RR intervals for all 5-minute segments, mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms) and frequency (low frequency, high frequency, very low frequency, low frequency/high frequency ratio) domains relative to peak flow velocity during rapid passive filling phase (E), atrial contraction (A), E/A ratio, E-wave deceleration time, and isovolumic relaxation time. Statistical analysis was performed with Pearson correlation and logistic regression. Results: Peak flow velocity during rapid passive filling phase (E) and atrial contraction (A), E/A ratio, and deceleration time of early mitral inflow did not demonstrate a significant correlation with indices of HRV in time and frequency domain. We found that the E/A ratio was < 1 in 45 individuals (10%). Individuals with an E/A ratio < 1 had lower indices of HRV in frequency domain (except low frequency/high frequency) and lower indices of the mean of the SD of all normal sinus RR intervals for all 5-minute segments, root-mean-square of the successive normal sinus RR interval difference, and percentage of successive normal sinus RR intervals > 50 ms in time domain. Logistic regression demonstrated that an E/A ratio < 1 was associated with lower HF. Conclusion: Individuals with no evidence of heart disease and an E/A ratio < 1 demonstrated a significant decrease in indexes of HRV associated with parasympathetic modulation. (J Am Soc Echocardiogr 2010;23: 762-5.)
Resumo:
PURPOSE. To evaluate the relationship between pattern electroretinogram (PERG) amplitude, macular and retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT), and visual field (VF) loss on standard automated perimetry (SAP) in eyes with temporal hemianopia from chiasmal compression. METHODS. Forty-one eyes from 41 patients with permanent temporal VF defects from chiasmal compression and 41 healthy subjects underwent transient full-field and hemifield (temporal or nasal) stimulation PERG, SAP and time domain-OCT macular and RNFL thickness measurements. Comparisons were made using Student`s t-test. Deviation from normal VF sensitivity for the central 18 of VF was expressed in 1/Lambert units. Correlations between measurements were verified by linear regression analysis. RESULTS. PERG and OCT measurements were significantly lower in eyes with temporal hemianopia than in normal eyes. A significant correlation was found between VF sensitivity loss and fullfield or nasal, but not temporal, hemifield PERG amplitude. Likewise a significant correlation was found between VF sensitivity loss and most OCT parameters. No significant correlation was observed between OCT and PERG parameters, except for nasal hemifield amplitude. A significant correlation was observed between several macular and RNFL thickness parameters. CONCLUSIONS. In patients with chiasmal compression, PERG amplitude and OCT thickness measurements were significant related to VF loss, but not to each other. OCT and PERG quantify neuronal loss differently, but both technologies are useful in understanding structure-function relationship in patients with chiasmal compression. (ClinicalTrials.gov number, NCT00553761.) (Invest Ophthalmol Vis Sci. 2009; 50: 3535-3541) DOI:10.1167/iovs.08-3093
Resumo:
Borges GR, Salgado HC, Silva CA, Rossi MA, Prado CM, Fazan R Jr. Changes in hemodynamic and neurohumoral control cause cardiac damage in one-kidney, one-clip hypertensive mice. Am J Physiol Regul Integr Comp Physiol 295: R1904-R1913, 2008. First published October 1, 2008; doi:10.1152/ajpregu.00107.2008.-Sympathovagal balance and baroreflex control of heart rate (HR) were evaluated during the development (1 and 4 wk) of one-kidney, one-clip (1K1C) hypertension in conscious mice. The development of cardiac hypertrophy and fibrosis was also examined. Overall variability of systolic arterial pressure (AP) and HR in the time domain and baroreflex sensitivity were calculated from basal recordings. Methyl atropine and propranolol allowed the evaluation of the sympathovagal balance to the heart and the intrinsic HR. Staining of renal ANG II in the kidney and plasma renin activity (PRA) were also evaluated. One and four weeks after clipping, the mice were hypertensive and tachycardic, and they exhibited elevated sympathetic and reduced vagal tone. The intrinsic HR was elevated only 1 wk after clipping. Systolic AP variability was elevated, while HR variability and baroreflex sensitivity were reduced 1 and 4 wk after clipping. Renal ANG II staining and PRA were elevated only 1 wk after clipping. Concentric cardiac hypertrophy was observed at 1 and 4 wk, while cardiac fibrosis was observed only at 4 wk after clipping. In conclusion, these data further support previous findings in the literature and provide new features of neurohumoral changes during the development of 1K1C hypertension in mice. In addition, the 1K1C hypertensive model in mice can be an important tool for studies evaluating the role of specific genes relating to dependent and nondependent ANG II hypertension in transgenic mice.