924 resultados para time domain analysis
Resumo:
The aim of the study was to evaluate the match work-rate of Chinese field hockey players by analyzing the distance covered at different intensities pooled by specific positions during different periods of matches. Thirty-eight players from twenty-four male field hockey matches at the 11th Chinese National Games were filmed and analyzed.mas
Resumo:
El objetivo de la tesis es la investigación de algoritmos numéricos para el desarrollo de herramientas numéricas para la simulación de problemas tanto de comportamiento en la mar como de resistencia al avance de buques y estructuras flotantes. La primera herramienta desarrollada resuelve el problema de difracción y radiación de olas. Se basan en el método de los elementos finitos (MEF) para la resolución de la ecuación de Laplace, así como en esquemas basados en MEF, integración a lo largo de líneas de corriente, y en diferencias finitas desarrollados para la condición de superficie libre. Se han desarrollado herramientas numéricas para la resolución de la dinámica de sólido rígido en sistemas multicuerpos con ligaduras. Estas herramientas han sido integradas junto con la herramienta de resolución de olas difractadas y radiadas para la resolución de problemas de interacción de cuerpos con olas. También se han diseñado algoritmos de acoplamientos con otras herramientas numéricas para la resolución de problemas multifísica. En particular, se han realizado acoplamientos con una herramienta numérica basada de cálculo de estructuras con MEF para problemas de interacción fluido-estructura, otra de cálculo de líneas de fondeo, y con una herramienta numérica de cálculo de flujos en tanques internos para problemas acoplados de comportamiento en la mar con “sloshing”. Se han realizado simulaciones numéricas para la validación y verificación de los algoritmos desarrollados, así como para el análisis de diferentes casos de estudio con aplicaciones diversas en los campos de la ingeniería naval, oceánica, y energías renovables marinas. ABSTRACT The objective of this thesis is the research on numerical algorithms to develop numerical tools to simulate seakeeping problems as well as wave resistance problems of ships and floating structures. The first tool developed is a wave diffraction-radiation solver. It is based on the finite element method (FEM) in order to solve the Laplace equation, as well as numerical schemes based on FEM, streamline integration, and finite difference method tailored for solving the free surface boundary condition. It has been developed numerical tools to solve solid body dynamics of multibody systems with body links across them. This tool has been integrated with the wave diffraction-radiation solver to solve wave-body interaction problems. Also it has been tailored coupling algorithms with other numerical tools in order to solve multi-physics problems. In particular, it has been performed coupling with a MEF structural solver to solve fluid-structure interaction problems, with a mooring solver, and with a solver capable of simulating internal flows in tanks to solve couple seakeeping-sloshing problems. Numerical simulations have been carried out to validate and verify the developed algorithms, as well as to analyze case studies in the areas of marine engineering, offshore engineering, and offshore renewable energy.
Resumo:
The glass gene is required for proper photo-receptor differentiation during development of the Drosophila eye glass codes for a DNA-binding protein containing five zinc fingers that we show is a transcriptional activator. A comparison of the sequences of the glass genes from two species of Drosophila and a detailed functional domain analysis of the Drosophila melanogaster glass gene reveal that both the DNA-binding domain and the transcriptional-activation domain are highly conserved between the two species. Analysis of the DNA-binding domain of glass indicates that the three carboxyl-terminal zinc fingers alone are necessary and sufficient for DNA binding. We also show that a deletion mutant of glass containing only the DNA-binding domain can behave in a dominant-negative manner both in vivo and in a cell culture assay that measures transcriptional activation.
Resumo:
Women’s handball is a sport, which has seen an accelerated development over the last decade. Data on movement patterns in combination with physiological demands are nearly nonexistent in the literature. The aim of this study was twofold: first, to analyze the horizontal movement pattern, including the sprint acceleration profiles, of individual female elite handball players and the corresponding heart rates (HRs) during a match and secondly to determine underlying correlations with individual aerobic performance. Players from one German First League team (n = 11) and the Norwegian National Team (n = 14) were studied during one match using the Sagit system for movement analysis and Polar HR monitoring for analysis of physiological demands. Mean HR during the match was 86 % of maximum HR (HRmax). With the exception of the goalkeepers (GKs, 78 % of HRmax), no position-specific differences could be detected. Total distance covered during the match was 4614 m (2066 m in GKs and 5251 m in field players (FPs)). Total distance consisted of 9.2 % sprinting, 26.7 % fast running, 28.8 % slow running, and 35.5 % walking. Mean velocity varied between 1.9 km/h (0.52 m/s) (GKs) and 4.2 km/h (1.17 m/s) (FPs, no position effect). Field players with a higher level of maximum oxygen uptake (V̇O2max) executed run activities with a higher velocity but comparable percentage of HRmax as compared to players with lower aerobic performance, independent of FP position. Acceleration profile depended on aerobic performance and the field player’s position. In conclusion, a high V̇O2max appears to be important in top-level international women’s handball. Sprint and endurance training should be conducted according to the specific demands of the player’s position.
Resumo:
Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggest that the observed spikes are associated with sodium or another nonacidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events.
Resumo:
Work domain analysis (WDA) has been applied to a range of complex work domains, but few WDAs have been undertaken in medical contexts. One pioneering effort suggested that clinical abstraction is not based on means-ends relations, whereas another effort downplayed the role of bio-regulatory mechanisms. In this paper it is argued that bio-regulatory mechanisms that govern physiological behaviour must be part of WDA models of patients as the systems at the core of intensive care units. Furthermore it is argued that because the inner functioning of patients is not completely known, clinical abstraction is based on hypothetico-deductive abstract reasoning. This paper presents an alternative modelling framework that conforms to the broader aspirations of WDA. A modified version of the viable systems model is used to represent the patient system as a nested dissipative structure while aspects of the recognition primed decision model are used to represent the information resources available to clinicians in ways that support lsquoif...thenrsquo conceptual relations. These two frameworks come together to form the recursive diagnostic framework, which may provide a more appropriate foundation for information display design in the intensive care unit.
Resumo:
After ingestion of a standardized dose of ethanol, alcohol concentrations were assessed, over 3.5 hours from blood (six readings) and breath (10 readings) in a sample of 412 MZ and DZ twins who took part in an Alcohol Challenge Twin Study (ACTS). Nearly all participants were subsequently genotyped on two polymorphic SNPs in the ADH1B and ADH1C loci known to affect in vitro ADH activity. In the DZ pairs, 14 microsatellite markers covering a 20.5 cM region on chromosome 4 that includes the ADH gene family were assessed, Variation in the timed series of autocorrelated blood and breath alcohol readings was studied using a bivariate simplex design. The contribution of a quantitative trait locus (QTL) or QTL's linked to the ADH region was estimated via a mixture of likelihoods weighted by identity-by-descent probabilities. The effects of allelic substitution at the ADH1B and ADH1C loci were estimated in the means part of the model simultaneously with the effects sex and age. There was a major contribution to variance in alcohol metabolism due to a QTL which accounted for about 64% of the additive genetic covariation common to both blood and breath alcohol readings at the first time point. No effects of the ADH1B*47His or ADH1C*349Ile alleles on in vivo metabolism were observed, although these have been shown to have major effects in vitro. This implies that there is a major determinant of variation for in vivo alcohol metabolism in the ADH region that is not accounted for by these polymorphisms. Earlier analyses of these data suggested that alcohol metabolism is related to drinking behavior and imply that this QTL may be protective against alcohol dependence.
Resumo:
This study explores whether the introduction of selectively trained radiographers reporting Accident and Emergency (A&E) X-ray examinations or the appendicular skeleton affected the availability of reports for A&E and General Practitioner (GP) examinations at it typical district general hospital. This was achieved by analysing monthly data on A&E and GP examinations for 1993 1997 using structural time-series models. Parameters to capture stochastic seasonal effects and stochastic time trends were included ill the models. The main outcome measures were changes in the number, proportion and timeliness of A&E and GP examinations reported. Radiographer reporting X-ray examinations requested by A&E was associated with it 12% (p = 0.050) increase in the number of A&E examinations reported and it 37% (p
Resumo:
The aim of this study was to quantify movements of Super 12 rugby players in competition because information on elite rugby players' movements is unavailable. Players were categorized into forwards [front (n = 16) and back row (n = 15)] and backs [inside (n = 9) and outside backs (n = 7)] and their movements analysed by video-based time motion analysis. Movements were classified as rest (standing, walking and jogging) and work (striding, sprinting, static exertion, jumping, lifting or tackling). The total time, number and duration of individual activities were assessed, with differences between groups evaluated using independent sample t-tests (unequal variances), while differences between halves were assessed with paired sample t-tests. Forwards had 7:47 min:s (95% confidence limits: 6:39 to 8:55 min:s, P
Resumo:
The bispectrum and third-order moment can be viewed as equivalent tools for testing for the presence of nonlinearity in stationary time series. This is because the bispectrum is the Fourier transform of the third-order moment. An advantage of the bispectrum is that its estimator comprises terms that are asymptotically independent at distinct bifrequencies under the null hypothesis of linearity. An advantage of the third-order moment is that its values in any subset of joint lags can be used in the test, whereas when using the bispectrum the entire (or truncated) third-order moment is required to construct the Fourier transform. In this paper, we propose a test for nonlinearity based upon the estimated third-order moment. We use the phase scrambling bootstrap method to give a nonparametric estimate of the variance of our test statistic under the null hypothesis. Using a simulation study, we demonstrate that the test obtains its target significance level, with large power, when compared to an existing standard parametric test that uses the bispectrum. Further we show how the proposed test can be used to identify the source of nonlinearity due to interactions at specific frequencies. We also investigate implications for heuristic diagnosis of nonstationarity.
Resumo:
Time period analysis was used in an international sample of clients ( N = 106) to demonstrate that cognitive - behavioral therapy (CBT) for panic disorder is associated with specific changes in both negative and positive cognitions during the treatment period. In the first 6 weeks of the treatment phase, working alliance failed to predict changes in panic severity, whereas changes in panic self-efficacy and catastrophic misinterpretation of bodily sensations predicted rapid symptom relief. In the last 6 weeks of treatment, higher doses of CBT were associated with further changes in positive and negative cognitions. The findings can be interpreted as suggesting that the role of the working alliance in CBT for panic disorder is to facilitate cognitive change.