782 resultados para tibia osteotomy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Precise adaptable fixation of a supracondylar humerus osteotomy with a radial/lateral external fixator to correct posttraumatic cubitus varus. INDICATIONS Acquired, posttraumatic cubitus varus as a result of a malhealed and unsatisfactorily treated supracondylar humerus fracture. Idiopathic, congenital cubitus varus (very seldom) if the child (independent of age and after complete healing) is cosmetically impaired; stability of the elbow is reduced due to malalignment (hyperextension); secondary problems and pain (e. g., irritation of the ulnar nerve) are expected or already exist; or there is an explicit wish of the child/parents (relative indication). CONTRAINDICATIONS In principle there are no contraindications provided that the indication criteria are filled. The common argument of age does not represent a contraindication in our opinion, since angular remodeling at the distal end of the humerus is practically nonexistent. SURGICAL TECHNIQUE Basically, the surgical technique of the radial external fixator is used as previously described for stabilization of complex supracondylar humeral fractures. With the patient in supine position, the arm is placed freely on an arm table. Using a 4-5 cm long skin incision along the radial, supracondylar, the extracapsular part of the distal humerus is prepared, whereby great caution regarding the radial nerve is advised. In contrast to the procedure used in radial external fixation for supracondylar humeral fracture treatment, two Schanz screws are always fixed in each fragment at a distance of 1.5-2 cm. The osteotomy must allow the fragment to freely move in all directions. The proximal and distal two Schanz screws are then connected with short 4 mm carbon or stainless steel rods. These two rods are connected with each other over another rod using the tub-to-tub technique. Now the preliminary correction according the clinical situation can be performed and the clamps are tightened. Anatomical axis and function are checked. If these are radiologically and clinically perfect, all clamps are definitively tightened; if the alignment or the function is not perfect, then further adjustments can be made. POSTOPERATIVE MANAGEMENT Due to the excellent stability, further immobilization not necessary. Immediate functional follow-up treatment performed according to pain. RESULTS Adequate healing is usually expected within 6 weeks. At this time the external fixator can be removed in the fracture clinic. Because the whole operation is performed in an extraarticular manner and the mobility of the elbow is not affected, deterioration of function has never been observed. Also regarding the cosmetic/anatomical situation, good results are expected because they were already achieved intraoperatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Proximal femoral osteotomy with stable fixation and sufficient correction. Low complication rates due to exact preoperative planning. INDICATIONS Congenital or traumatic femoral neck pseudarthrosis. Coxa vara. CONTRAINDICATIONS None. In severe deformities, a single femoral osteotomy may not solve the problem; thus, additional correction, e.g., a pelvic osteotomy, is required. SURGICAL TECHNIQUE Correct planning of the correction angle. Lateral approach. Subperiosteal detachment of vastus lateralis muscle. Place guide wire on the femoral neck to judge anteversion. Insert positioning wire 5 mm distal to trochanteric physis. Insert 2.8 mm Kirschner wire in the femoral neck. Osteotomy of the femur after marking the rotation by Kirschner wires or oscillating saw. Slide LC plate over Kirschner wires. Replace Kirschner wires with screws. Reduction of the femoral shaft to the plate with bone forceps. Definitive fixation of the plate to the femoral shaft by cortex or locking screws. Readaptation of vastus lateralis muscle over the plate. POSTOPERATIVE MANAGEMENT Partial weightbearing for 4-6 weeks depending on the age of the patient without any external fixation (e. g. cast) is possible. RESULTS Recent studies support the authors' findings of sufficient correction and stable fixation after proximal femoral osteotomy with the LCP pediatric hip plate. Low complication rates and stable fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Correction of all kind of deformities at the distal part of the femur (supracondylar). INDICATIONS Flexion, extension osteotomies, and varus or valgus, and external or internal rotation osteotomies, and shortening osteotomies of the distal femur or combined surgical procedures (e.g., extension and de-rotation osteotomy). CONTRAINDICATIONS Osteotomy through unknown bony process. SURGICAL TECHNIQUE LCP system provides angular stable fixation. POSTOPERATIVE MANAGEMENT Without concomitant surgical procedures of soft tissue (e.g., patellar tendon shortening), early functional rehabilitation is possible with immediate weight bearing (35 kg for small fragment plates and 70 kg for large fragment plates). RESULTS The surgical procedure is safe and is associated with few complications. Overall complication rate in this series of patients was 3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pelvic osteotomies improve containment of the femoral head in cases of developmental dysplasia of the hip or in femoroacetabular impingement due to acetabular retroversion. In the evolution of osteotomies, the Ganz Periacetabular Osteotomy (PAO) is among the complex reorientation osteotomies and allows for complete mobilization of the acetabulum without compromising the integrity of the pelvic ring. For the complex reorientation osteotomies, preoperative planning of the required acetabular correction is an important step, due to the need to comprehend the three-dimensional (3D) relationship between acetabulum and femur. Traditionally, planning was performed using conventional radiographs in different projections, reducing the 3D problem to a two-dimensional one. Known disturbance variables, mainly tilt and rotation of the pelvis make assessment by these means approximate at the most. The advent of modern enhanced computation skills and new imaging techniques gave room for more sophisticated means of preoperative planning. Apart from analysis of acetabular geometry on conventional x-rays by sophisticated software applications, more accurate assessment of coverage and congruency and thus amount of correction necessary can be performed on multiplanar CT images. With further evolution of computer-assisted orthopaedic surgery, especially the ability to generate 3D models from the CT data, examiners were enabled to simulate the in vivo situation in a virtual in vitro setting. Based on this ability, different techniques have been described. They basically all employ virtual definition of an acetabular fragment. Subsequently reorientation can be simulated using either 3D calculation of standard parameters of femoroacetabular morphology, or joint contact pressures, or a combination of both. Other techniques employ patient specific implants, templates or cutting guides to achieve the goal of safe periacetabular osteotomies. This chapter will give an overview of the available techniques for planning of periacetabular osteotomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter a low-cost surgical navigation solution for periacetabular osteotomy (PAO) surgery is described. Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient’s pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient’s anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient’s pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography (CT) scan is used to visualize the updated orientation of the acetabular fragment. Experiments with plastic bones (7 hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistical difference on the measurement of acetabular component reorientation (anteversion and inclination). In six out of seven hip joints the mean absolute difference was below five degrees for both anteversion and inclination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periacetabular Osteotomy (PAO) is a joint preserving surgical intervention intended to increase femoral head coverage and thereby to improve stability in young patients with hip dysplasia. Previously, we developed a CT-based, computer-assisted program for PAO diagnosis and planning, which allows for quantifying the 3D acetabular morphology with parameters such as acetabular version, inclination, lateral center edge (LCE) angle and femoral head coverage ratio (CO). In order to verify the hypothesis that our morphology-based planning strategy can improve biomechanical characteristics of dysplastic hips, we developed a 3D finite element model based on patient-specific geometry to predict cartilage contact stress change before and after morphology-based planning. Our experimental results demonstrated that the morphology-based planning strategy could reduce cartilage contact pressures and at the same time increase contact areas. In conclusion, our computer-assisted system is an efficient tool for PAO planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this blinded, randomised, prospective clinical trial was to determine whether the addition of magnesium sulphate to spinally-administered ropivacaine would improve peri-operative analgesia without impairing motor function in dogs undergoing orthopaedic surgery. Twenty client-owned dogs undergoing tibial plateau levelling osteotomy were randomly assigned to one of two treatment groups: group C (control, receiving hyperbaric ropivacaine by the spinal route) or group M (magnesium, receiving a hyperbaric combination of magnesium sulphate and ropivacaine by the spinal route). During surgery, changes in physiological variables above baseline were used to evaluate nociception. Arterial blood was collected before and after spinal injection, at four time points, to monitor plasma magnesium concentrations. Post-operatively, pain was assessed with a modified Sammarco pain score, a Glasgow pain scale and a visual analogue scale, while motor function was evaluated with a modified Tarlov scale. Assessments were performed at recovery and 1, 2 and 3 h thereafter. Fentanyl and buprenorphine were administered as rescue analgesics in the intra- and post-operative periods, respectively. Plasma magnesium concentrations did not increase after spinal injection compared to baseline. Group M required less intra-operative fentanyl, had lower Glasgow pain scores and experienced analgesia of longer duration than group C (527.0 ± 341.0 min vs. 176.0 ± 109.0 min). However, in group M the motor block was significantly longer, which limits the usefulness of magnesium for spinal analgesia at the investigated dose. Further research is needed to determine a clinically effective dose with shorter duration of motor block for magnesium used as an additive to spinal analgesic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analgesic effects of peripheral nerve blocks can be prolonged with the placement of perineural catheters allowing repeated injections of local anaesthetics in humans. The objectives of this study were to evaluate the clinical suitability of a perineural coiled catheter (PCC) at the sciatic nerve and to evaluate pain during the early post-operative period in dogs after tibial plateau levelling osteotomy. Pre-operatively, a combined block of the sciatic and the femoral nerves was performed under sonographic guidance (ropivacaine 0.5%; 0.3 mL kg−1 per nerve). Thereafter, a PCC was placed near the sciatic nerve. Carprofen (4 mg kg−1 intravenously) was administered at the end of anaesthesia. After surgery, all dogs were randomly assigned to receive four injections of ropivacaine (group R; 0.25%, 0.3 mL kg−1) or NaCl 0.9% (group C; 0.3 mL kg−1) every 6 h through the PCC. Pain was assessed by use of a visual analogue scale (VAS) and a multi-dimensional pain score (4Avet) before surgery (T-1), for 390 min (T0, T30, T60, T120, T180, T240, T300, T360 and T390) as well as 1 day after surgery (Day 1). Methadone (0.1 mg kg−1) was administered each time the VAS was ≥40 mm or the 4Avet was ≥5. At T390 dogs received buprenorphine (0.02 mg kg−1). Data were compared using Mann–Whitney rank sum tests and repeated measures analysis of variance. Regardless of group allocation, 55% of dogs required methadone. VAS was significantly lower at T390 (P = 0.003), and at Day 1 (P = 0.002) and so was 4Avet at Day 1 (P = 0.012) in group R than in group C. Bleeding occurred in one dog at PCC placement and PCC dislodged six times of 47 PCCs placed. Minor complications occurred with PCC but allowed four repeated administrations of ropivacaine or saline over 24 h in 91.5% of the cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Advancement of the greater trochanter alters the function of the gluteus medius muscle. However, with the exception of clinical studies and biomechanical lever arm studies, no publications that analyze the consequences of advancement of the greater trochanter on the muscle function exist. The aim of the study was to analyze the mechanical changes of gluteus medius after osteotomy of the greater trochanter in a lab setting. METHODS An anatomical study of origin and insertion of the gluteus medius was carried out on four hips. Based on the dissections, a string model was developed dividing the muscle into five sectors. Changes in muscle fiber length were measured for every 10° of flexion, internal and external rotation and abduction with the trochanter in anatomic, proximalized and distalized positions. RESULTS Distalization of the trochanter leads to an imbalance of muscle action, moving the isometric sector of the muscle anteriorly with more muscle sectors being active during flexion and less during extension. Stretching of the muscle increases passive forces but decreases the force generation capacity of the muscle and at the same time increased muscle fiber excursion may require more energy consumption, which may explain earlier fatigue of the abductor musculature after distalization of the trochanter. For abduction, distalization of the muscle attachment leads to a change in contraction pattern from isometric to isotonic. Optimal balancing and excursion of the muscle is when the tip of the greater trochanter is at level with the hip rotation center. CONCLUSIONS In hips with high riding trochanter, the optimal position is at the level of the center of hip rotation. Excessive distalization should be avoided. As the conclusions and considerations are based on a lab setting, transfer to clinical practice may not necessarily apply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The pararectus approach has been validated for managing acetabular fractures. We hypothesised it might be an alternative approach for performing periacetabular osteotomy (PAO). METHODS Using four cadaver specimens, we randomly performed PAO through either the pararectus or a modified Smith-Petersen (SP) approach. We assessed technical feasibility and safety. Furthermore, we controlled fragment mobility using a surgical navigation system and compared mobility between approaches. The navigation system's accuracy was tested by cross-examination with validated preoperative planning software. RESULTS The pararectus approach is technically feasible, allowing for adequate exposure, safe osteotomies and excellent control of structures at risk. Fragment mobility is equal to that achieved through the SP approach. Validation of these measurements yielded a mean difference of less <1 mm without statistical significance. CONCLUSION Experimental data suggests the pararectus approach might be an alternative approach for performing PAO. Clinical validation is necessary to confirm these promising preliminary results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Residual acetabular dysplasia is seen in combination with femoral pathomorphologies including an aspherical femoral head and valgus neck-shaft angle with high antetorsion. It is unclear how these femoral pathomorphologies affect range of motion (ROM) and impingement zones after periacetabular osteotomy. QUESTIONS/PURPOSES (1) Does periacetabular osteotomy (PAO) restore the typically excessive ROM in dysplastic hips compared with normal hips; (2) how do impingement locations differ in dysplastic hips before and after PAO compared with normal hips; (3) does a concomitant cam-type morphology adversely affect internal rotation; and (4) does a concomitant varus-derotation intertrochanteric osteotomy (IO) affect external rotation? METHODS Between January 1999 and March 2002, we performed 200 PAOs for dysplasia; of those, 27 hips (14%) met prespecified study inclusion criteria, including availability of a pre- and postoperative CT scan that included the hip and the distal femur. In general, we obtained those scans to evaluate the pre- and postoperative acetabular and femoral morphology, the degree of acetabular reorientation, and healing of the osteotomies. Three-dimensional surface models based on CT scans of 27 hips before and after PAO and 19 normal hips were created. Normal hips were obtained from a population of CT-based computer-assisted THAs using the contralateral hip after exclusion of symptomatic hips or hips with abnormal radiographic anatomy. Using validated and computerized methods, we then determined ROM (flexion/extension, internal- [IR]/external rotation [ER], adduction/abduction) and two motion patterns including the anterior (IR in flexion) and posterior (ER in extension) impingement tests. The computed impingement locations were assigned to anatomical locations of the pelvis and the femur. ROM was calculated separately for hips with (n = 13) and without (n = 14) a cam-type morphology and PAOs with (n = 9) and without (n = 18) a concomitant IO. A post hoc power analysis based on the primary research question with an alpha of 0.05 and a beta error of 0.20 revealed a minimal detectable difference of 4.6° of flexion. RESULTS After PAO, flexion, IR, and adduction/abduction did not differ from the nondysplastic control hips with the numbers available (p ranging from 0.061 to 0.867). Extension was decreased (19° ± 15°; range, -18° to 30° versus 28° ± 3°; range, 19°-30°; p = 0.017) and ER in 0° flexion was increased (25° ± 18°; range, -10° to 41° versus 38° ± 7°; range, 17°-41°; p = 0.002). Dysplastic hips had a higher prevalence of extraarticular impingement at the anteroinferior iliac spine compared with normal hips (48% [13 of 27 hips] versus 5% [one of 19 hips], p = 0.002). A PAO increased the prevalence of impingement for the femoral head from 30% (eight of 27 hips) preoperatively to 59% (16 of 27 hips) postoperatively (p = 0.027). IR in flexion was decreased in hips with a cam-type deformity compared with those with a spherical femoral head (p values from 0.002 to 0.047 for 95°-120° of flexion). A concomitant IO led to a normalization of ER in extension (eg, 37° ± 7° [range, 21°-41°] of ER in 0° of flexion in hips with concomitant IO compared with 38° ± 7° [range, 17°-41°] in nondysplastic control hips; p = 0.777). CONCLUSIONS Using computer simulation of hip ROM, we could show that the PAO has the potential to restore the typically excessive ROM in dysplastic hips. However, a PAO can increase the prevalence of secondary intraarticular impingement of the aspherical femoral head and extraarticular impingement of the anteroinferior iliac spines in flexion and internal rotation. A cam-type morphology can result in anterior impingement with restriction of IR. Additionally, a valgus hip with high antetorsion can result in posterior impingement with decreased ER in extension, which can be normalized with a varus derotation IO of the femur. However, indication of an additional IO needs to be weighed against its inherent morbidity and possible complications. The results are based on a limited number of hips with a pre- and postoperative CT scan after PAO. Future prospective studies are needed to verify the current results based on computer simulation and to test their clinical importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current techniques for three-dimensional correction of the chin in patients with mandibular retrusion may increase mentolabial fold depth, but have limited effect on the lips. The authors present a single surgical technique to support the mentolabial fold and improve labial competence. The visor osteotomy is performed from canine to canine. The bone fragment pedicled to the lingual periosteum is coronally mobilized and fixed in the new position. Preserved vascularization is supposed to minimize the amount of bone resorbed. Visor osteotomy of the anterior mandible may improve the existing treatments for micrognathia by creating an aesthetic mentolabial fold and a competent lip seal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Trans-olecranon chevron osteotomies (COs) remain the gold standard surgical approach to type C fractures of the distal humerus. This technique is associated with a high complication rate and development of an extra-articular olecranon osteotomy may be advantageous. The aim of this study was to compare the load to failure of COs with extra-articular oblique osteotomies (OOs) as well as modified, extra-articular step osteotomies (SOs). METHODS These three osteotomies and their subsequent fixation utilizing a standardized tension band wiring technique were tested in 42 composite analog ulnae models at 20° and 70° of flexion. Triceps loading was simulated with a servo hydraulic testing machine. All specimens were isometrically loaded until failure. Kinematic and force data, as well as interfragmentary motion were recorded. RESULTS At 70°, CO failed at a mean load of 963N (SD 104N), the OO at 1512N (SD 208N) and the SO at 1484N (SD 153N), (P<0.001). At 20°, CO failed at a mean load of 707N (SD 104N) and OO at 1009N (SD 85N) (P=0.006). The highest load to failure was observed for the SO, which was 1277N (SD 172N). The load to failure of the SO was significantly higher than the CO as well as the OO. CONCLUSION Extra-articular osteotomies showed a significantly higher load to failure in comparison to traditional CO. At near full extension (20° of flexion), this biomechanical advantage was further enhanced by a step-cut modification of the extra-articular oblique osteotomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.