839 resultados para thermo-oxidative degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to develop and validate a mechanistic model for the degradation of phenol by the Fenton process. Experiments were performed in semi-batch operation, in which phenol, catechol and hydroquinone concentrations were measured. Using the methodology described in Pontes and Pinto [R.F.F. Pontes, J.M. Pinto, Analysis of integrated kinetic and flow models for anaerobic digesters, Chemical Engineering journal 122 (1-2) (2006) 65-80], a stoichiometric model was first developed, with 53 reactions and 26 compounds, followed by the corresponding kinetic model. Sensitivity analysis was performed to determine the most influential kinetic parameters of the model that were estimated with the obtained experimental results. The adjusted model was used to analyze the impact of the initial concentration and flow rate of reactants on the efficiency of the Fenton process to degrade phenol. Moreover, the model was applied to evaluate the treatment cost of wastewater contaminated with phenol in order to meet environmental standards. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports experimental results obtained in a laboratory-scale photochemical reactor on the photodegradation of poly(ethylene glycol) (PEG) in aqueous solutions by means of the photo-Fenton and H(2)O(2)/UV processes. Dilute water solutions of PEG were fed to a batch reactor, mixed with pertinent reactants, and allowed to react under different conditions. Reaction progress was evaluated by sampling and analyzing the concentration of the total organic carbon (TOC) in solution as a function of the reaction time. Organic acids formed during oxidation were determined by HPLC analyses. The main acids detected in both processes were acetic and formic. Glycolic acid was detected only in the photo-Fenton process, and malonic acid was detected only in the H(2)O(2)/UV treatment, indicating that different reaction paths occur in these processes. The characteristics of both processes are discussed, based on the evolution of the TOC-time curves and the concentration profiles of the monitored organic acids. The experimental results constitute a contribution to the design of industrial processes for the treatment of wastewaters containing soluble polymers with similar properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics and mechanism of the thermal activation of peroxydisulfate, in the temperature range from 60 to 80 degrees C, was investigated in the presence and absence of sodium formate as an additive to turn the oxidizing capacity of the reaction mixture into a reductive one. Trichloroacetic acid, TCA, whose degradation by a reductive mechanism is well reported in the literature, was used as a probe. The chemistry of thermally activated peroxydisulfate is described by a reaction scheme involving free radical generation. The proposed mechanism is evaluated by a computer simulation of the concentration profiles obtained under different experimental conditions. In the presence of formate, SO(4)(center dot-) radicals yield CO(2)(center dot-), which are the main species available for degrading TCA. Under the latter conditions, TCA is more efficiently depleted than in the absence of formate, but otherwise identical conditions of temperature and [S(2)O(8)(2-)]. We therefore conclude that activated peroxydisulfate in the presence of formate as an additive is a convenient method for the mineralization of substrates that are refractory to oxidation. such as perchlorinated hydrocarbons and TCA. This method has the advantage that leaves no toxic residues. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photodegradation of the herbicide clomazone in the presence of S(2)O(8)(2-) or of humic substances of different origin was investigated. A value of (9.4 +/- 0.4) x 10(8) m(-1) s(-1) was measured for the bimolecular rate constant for the reaction of sulfate radicals with clomazone in flash-photolysis experiments. Steady state photolysis of peroxydisulfate, leading to the formation of the sulfate radicals, in the presence of clomazone was shown to be an efficient photodegradation method of the herbicide. This is a relevant result regarding the in situ chemical oxidation procedures involving peroxydisulfate as the oxidant. The main reaction products are 2-chlorobenzylalcohol and 2-chlorobenzaldehyde. The degradation kinetics of clomazone was also studied under steady state conditions induced by photolysis of Aldrich humic acid or a vermicompost extract (VCE). The results indicate that singlet oxygen is the main species responsible for clomazone degradation. The quantum yield of O(2)(a(1)Delta(g)) generation (lambda = 400 nm) for the VCE in D(2)O, Phi(Delta) = (1.3 +/- 0.1) x 10(-3), was determined by measuring the O(2)(a(1)Delta(g)) phosphorescence at 1270 nm. The value of the overall quenching constant of O(2)(a(1)Delta(g)) by clomazone was found to be (5.7 +/- 0.3) x 10(7) m(-1) s(-1) in D(2)O. The bimolecular rate constant for the reaction of clomazone with singlet oxygen was k(r) = (5.4 +/- 0.1) x 10(7) m(-1) s(-1), which means that the quenching process is mainly reactive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous extract of mate (dried leaves of Ilex paraguariensis) added to drinking water for broilers for the last 14 days prior to slaughter did not affect performance at 25 days of age, but improved oxidative stability of the chicken meat. Oxidative stability of precooked breast meat made from control meat (CON) and from meat of broilers raised on water with mate added was investigated during chill storage for up to 7 days. The use of mate showed no influence on the content of lipids in chicken breast meat; however, lipid oxidation measured as thiobarbituric acid-reactive substances (TBARS) was significantly lower for meat from broilers raised on water with mate extracts in different concentrations (MA0.1, MA0.5, and MA1.0 corresponding to 0.1, 0.5, and 1.0% of mate dried leaves). The relative effect was largest at 1 day of storage with more than 50% reduction on TBARS; the result was still significant after 3 days, but almost vanished after 7 days, when oxidative rancidity was very high in all samples. In meat from broilers raised on water with mate extract, vitamin E was protected during cooking, although in the very rancid meat balls at 7 days of storage, the protection almost disappeared. Nevertheless, mate can be an interesting natural alternative to be used in chicken diets to improve lipid stability of the meat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological responses of sugarcane (Succharion officinarum L.) to oxidative stress induced by methyl viologen (paraquat) were examined with respect to photochemical activity, chlorophyll content, lipid peroxidation and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. Thirty-day-old sugarcane plants were sprayed with 0, 2, 4, 6 and 8 mM methyl viologen (MV). Chlorophyll fluorescence was measured after 18 It and biochemical analyses were performed after 24 and 48 h. Concentrations of MV above 2 mM caused significant damage to photosystem II (PSII) activity. Potential and effective quantum efficiency of PSII and apparent electron transport rate were greatly reduced or practically abolished. Both chlorophyll and soluble protein contents steadily decreased with MV concentrations above 2 mM after 24 It of exposure, which became more pronounced after 48 It, achieving a 3-fold decrease. Insoluble protein contents were little affected by MV. Oxidative stress induced by MV was evidenced by increases in lipid peroxidation. Specific activity of SOD increased, even after 48 h of exposure to the highest concentrations of MV, but total activity on a fresh weight basis did not change significantly. Nondenaturing YAGE assayed with H2O2 and KCN showed that treatment with MV did not change Cu/Zn-SOD and MnSOD isoform activities. In contrast, APX specific activity increased at 2 mM MV but then dropped at higher doses. Oxidative damage induced by MV was inversely related to APX activity. It is suggested that the major MV-induced oxidative damages in sugarcane leaves were related to excess H2O2, probably in chloroplasts, caused by an imbalance between SOD and APX activities, in which APX was a limiting step. Reduced photochemical activity allowed the early detection of the ensuing oxidative stress. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the behavior of the association between atrazine and glyphosate in the soil through mineralization and degradation tests. Soil treatments consisted of the combination of a field dose of glyphosate (2.88 kg ha-1) with 0, 1/2, 1 and 2 times a field dose of atrazine (3.00 kg ha-1) and a field dose of atrazine with 0, 1/2, 1 and 2 times a field dose of glyphosate. The herbicide mineralization rates were measured after 0, 3, 7, 14, 21, 28, 35, 42, 49, 56 and 63 days of soil application, and degradation rates after 0, 7, 28 and 63 days. Although glyphosate mineralization rate was higher in the presence of 1 (one) dose of atrazine when compared with glyphosate alone, no significant differences were found when half or twice the atrazine dose was applied, meaning that differences in glyphosate mineralization rates cannot be attributed to the presence of atrazine. On the other hand, the influence of glyphosate on atrazine mineralization was evident, since increasing doses of glyphosate increased the atrazine mineralization rate and the lowest dose of glyphosate accelerated atrazine degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to further address the known interaction between ethylene and components of the oxidative system, we have used the ethylene-insensitive Never ripe (Nr) tomato (Solanum lycopersicum L) mutant, which blocks ethylene responses. The mutant was compared to the control Micro-Tom (MT) cultivar subjected to two stressful situations: 100 mM NaCl and 0.5 mM CdCl(2). Leaf chlorophyll, lipid peroxidation and antioxidant enzyme activities in roots, leaves and fruits, and Na and Cd accumulation in tissues were determined. Although we verified a similar growth pattern and Na and Cd accumulation for MT and Nr, the mutant exhibited reduced leaf chlorophyll degradation following stress. In roots and leaves, the patterns of catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), superoxide dismutase (SOD) enzyme activity as well as malondialdehyde (MDA) and hydrogen peroxide (H(2)O(2)) production under the stressful conditions tested were very similar between MT and Nr mutant. However, Nr fruits showed increased H(2)O(2) production, reduced and enhanced APX activity in NaCl and CdCl(2), respectively, and enhanced GPOX in NaCl. Moreover, through non-denaturing PAGE, a similar reduction of SOD I band intensity in both, control MT and Nr mutant, treated with NaCl was observed. In leaves and fruits, a similar SOD activity pattern was observed for all periods, genotypes and treatments. Overall the results indicate that the ethylene signaling associated with NR receptor can modulate the biochemical pathways of oxidative stress in a tissue dependent manner, and that this signaling may be different following Na and Cd exposure. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory analysis is one of the most suitable processes for measuring oxidative damage and determining the shelf-life of nuts, but it is an expensive and time-consuming methodology. Thus, our objective was to correlate sensory data and chemical markers obtained during the accelerated oxidation of Brazil nuts and to determine the chemical parameters values associated with the sensory shelf-life of the nuts as established by the consumers. Brazil nuts were kept at 80 A degrees C for 21 days. At intervals of 2 days, the oxidized odor of the samples was analyzed by nine trained panelists using a discriminative scale, and the oil was extracted to quantify the chemical parameters. A high (r > 0.95) and significant correlation (p < 0.05) was observed between the sensory data and the hydroperoxide concentration (PV), para-anisidine value (pAV), hexanal content, and alpha- and gamma-tocopherol concentrations. When compared with fresh samples, sensory identification of oxidized odor occurred on the 4th day, noticeably earlier than changes in chemical markers (12th day). Consumers rejected the nuts after 12 days of storage, which corresponded to PV = 18.8 meq kg(-1) oil, pAV = 7.68, hexanal = 48.95 mu mol 100 g(-1) oil, alpha-tocopherol = 15.01 mg kg(-1) oil, and gamma + beta-tocopherol = 73.88 mg kg(-1) oil. Our study suggests that simple spectrometric methods, such as PV and pAV, can be used to estimate the oxidative shelf-life of nuts based on sensory analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minor components (polar components) and the degree of unsaturation of the fatty acids are the main factors responsible for the oxidative stability of bulk oils and emulsions. The isolated effects of these two factors and their interaction were evaluated in oil-in-water emulsions stored at 32 A degrees C. Samples of coconut, olive, soybean, linseed and fish oils, both full and stripped of their polar components, were used to prepare the emulsions (1% w/w). The maximum concentration of hydroperoxide (LOOH(max)) and the rate of formation of hydroperoxides (mu mol L(-1) h(-1)) were used to measure the primary products. Hexanal, propanal and malondialdehyde were used to determine the secondary products of the oxidized emulsions containing polyunsaturated fatty acids. LOOH(max) varied from 0.16 to 12.75 mmol/kg among the samples. The interaction between the polar components and the degree of unsaturation of the fatty acids was significant (p < 0.001) when the hydroperoxides were evaluated. In general, the degree of unsaturation (beta(1)) and the absence of polar components (beta(2)), respectively, represented 30 and 20% of the contribution to increase the mean oxidation, with the interaction (beta(12)) contribution being more sensitive to the rate of formation of hydroperoxides (16%) than to the LOOH(max) (5%). The significance of this interaction suggests that both strategies present synergism and should be applied to improve the oxidative stability of food emulsions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diet and plasma lipid patterns associated with lipid oxidation susceptibility in rats fed different doses of polyunsaturated fatty acids (n-3 PUFA) from fish oil were evaluated. Wistar rats were assigned into three groups and received diets containing 8% soybean oil (SOY), 4% soybean oil + 4% fish oil (SOY-FISH) and 8% fish oil (FISH) for 21 days. Linoleic, oleic and alpha-linolenic acids in SOY diets were substituted by myristic, palmitic, palmitoleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in SOY-FISH and FISH diets reducing the n-6/n-3 ratio and increasing the peroxidability index (PI). Increased dietary EPA and DHA were observed in SOY-FISH and FISH plasma at the expense of linoleic and arachidonic acid levels. Saturated fatty acids, which were significantly different between the three diets (P < 0.01), were found at the same concentration in the plasma (P = 0.23). No changes were observed in oxidative stress as measured by the concentration of thiobarbituric acid reactive substances (TBARS) expressed in brain homogenates. However, TBARS concentration in the plasma of the SOY-FISH group was higher than the other two groups (P = 0.02). The major differences between these three groups were the n-3 PUFA content (0.4, 1.8 and 3.2 g/100 g diet) and the saturates/polyunsaturates ratio (0.3, 0.5 and 0.8) for SOY, SOY-FISH, and FISH groups, respectively. Thus, n-3 PUFA intake from fish oil only when followed by a decrease in saturated/polyunsaturated fatty acids ratio increased oxidative susceptibility in rats measured by plasma TBARS concentration. PRACTICAL APPLICATIONS Because fish oil intake is associated with risk reduction for cardiovascular disease, individuals are taking supplements containing a high dose of fish oil. However, there is no scientific consensus if the intake of a high dose of fish oil could increase the oxidative stress. Thus, more studies are necessary to assure the safety of this kind of supplementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural chlorophyll degradation results in noncolored chlorophyll catabolites (NCCs), but there are controversies if these are the final products. The formation and degradation of NCCs during soybean seed (Glycine max L. Merrill) maturation and two drying temperatures were investigated. Soybean was harvested at six maturation stages. The effect of postharvest drying at 40 and 60 degrees C on the NCC formation was analyzed by high-performance liquid chromatography (HPLC), and results were expressed as areas under the curve. All samples contained fractions with an absorption maximum at 320 nm, typical for NCC. The amounts of NCC increased until 114 days after planting and were significantly lower in advanced maturation stages. These results indicate that the NCC in soybeans might not be the final products of chlorophyll degradation. Their reduction in advanced maturation stages may be due to further metabolization. Heating soybeans at 40 and 60 degrees C promoted unnatural chlorophyll degradation and impaired the formation of NCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.