866 resultados para the Fuzzy Colour Segmentation Algorithm
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJECTIVE: Differentiation between benign and malignant ovarian neoplasms is essential for creating a system for patient referrals. Therefore, the contributions of the tumor markers CA125 and human epididymis protein 4 (HE4) as well as the risk ovarian malignancy algorithm (ROMA) and risk malignancy index (RMI) values were considered individually and in combination to evaluate their utility for establishing this type of patient referral system. METHODS: Patients who had been diagnosed with ovarian masses through imaging analyses (n = 128) were assessed for their expression of the tumor markers CA125 and HE4. The ROMA and RMI values were also determined. The sensitivity and specificity of each parameter were calculated using receiver operating characteristic curves according to the area under the curve (AUC) for each method. RESULTS: The sensitivities associated with the ability of CA125, HE4, ROMA, or RMI to distinguish between malignant versus benign ovarian masses were 70.4%, 79.6%, 74.1%, and 63%, respectively. Among carcinomas, the sensitivities of CA125, HE4, ROMA (pre-and post-menopausal), and RMI were 93.5%, 87.1%, 80%, 95.2%, and 87.1%, respectively. The most accurate numerical values were obtained with RMI, although the four parameters were shown to be statistically equivalent. CONCLUSION: There were no differences in accuracy between CA125, HE4, ROMA, and RMI for differentiating between types of ovarian masses. RMI had the lowest sensitivity but was the most numerically accurate method. HE4 demonstrated the best overall sensitivity for the evaluation of malignant ovarian tumors and the differential diagnosis of endometriosis. All of the parameters demonstrated increased sensitivity when tumors with low malignancy potential were considered low-risk, which may be used as an acceptable assessment method for referring patients to reference centers.
Resumo:
Objectives: To evaluate the colour stability of paints used for ocular prosthesis iris painting submitted for accelerated artificial ageing (AAA). Materials and methods: Forty specimens of acrylic resin for sclera (16 x 2 mm) were made and separated into eight groups (n = 10) according to the type of paint (gouache, GP; oil, OP; acrylic AP; and composite resin for characterisation, CR) and the colours used (blue/brown). After drying (72 h), a new layer of colourless acrylic resin was applied and the initial colour readout was performed (Spectrophotometer PCB 6807). New colour readouts were performed after AAA, and Delta E was calculated. Results: Statistical analysis (two-way ANOVA-Bonferroni, p < 0.05) demonstrated that the brown colour showed lower Delta E means in comparison with the blue colour, with statistically significant difference for AP only. Blue colour showed no statistically significant difference with regard to the type of paint used. Brown AP showed lower Delta E than the other groups, with significant difference for OP and GP. GP showed greater alteration in Delta E for the brown colour, being statistically similar only to OP. Conclusions: Only the AP group for brown pigment shows clinically acceptable values for colour stability after AAA.
Resumo:
Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering similar to 315 deg(2). Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims. We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour-magnitude diagram (CMD) for the entire Galactic bulge. Methods. Photometric data in the JHK(s) bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the similar to 315 deg(2) covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results. We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b similar to -8 degrees-10 degrees, while in the inner part (b similar to -3 degrees) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - K-s) similar to 0.7-0.9 mag and K-s greater than or similar to 14 mag. Conclusions. The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour, and even its splitting into a secondary peak, are caused by reddening effects. The region around the Galactic centre is harder to interpret because it is strongly affected by reddening and extinction.
Resumo:
The analysis of spatial relations among objects in an image is an important vision problem that involves both shape analysis and structural pattern recognition. In this paper, we propose a new approach to characterize the spatial relation along, an important feature of spatial configurations in space that has been overlooked in the literature up to now. We propose a mathematical definition of the degree to which an object A is along an object B, based on the region between A and B and a degree of elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance information is included as well. In order to cover a more wide range of potential applications, both the crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D regions or ID contours, and the definition of the alongness between them is derived from a visibility notion and from the region between the objects. However, the computational complexity of this approach leads us to the proposition of a new model to calculate the between region using the convex hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed model and the derived measures of alongness, thus showing that they agree with the common sense. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The spectral reflectance of the sea surface recorded using ocean colour satellite sensors has been used to estimate chlorophyll-a concentrations for decades. However, in bio-optically complex coastal waters, these estimates are compromised by the presence of several other coloured components besides chlorophyll, especially in regions affected by low-salinity waters. The present work aims to (a) describe the influence of the freshwater plume from the La Plata River on the variability of in situ remote sensing reflectance and (b) evaluate the performance of operational ocean colour chlorophyll algorithms applied to Southwestern Atlantic waters, which receive a remarkable seasonal contribution from La Plata River discharges. Data from three oceanographic cruises are used, in addition to a historical regional bio-optical dataset. Deviations found between measured and estimated concentrations of chlorophyll-a are examined in relation to surface water salinity and turbidity gradients to investigate the source of errors in satellite estimates of pigment concentrations. We observed significant seasonal variability in surface reflectance properties that are strongly driven by La Plata River plume dynamics and arise from the presence of high levels of inorganic suspended solids and coloured dissolved materials. As expected, existing operational algorithms overestimate the concentration of chlorophyll-a, especially in waters of low salinity (S<33.5) and high turbidity (Rrs(670)>0.0012 sr−1). Additionally, an updated version of the regional algorithm is presented, which clearly improves the chlorophyll estimation in those types of coastal environment. In general, the techniques presented here allow us to directly distinguish the bio-optical types of waters to be considered in algorithm studies by the ocean colour community.
Resumo:
Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.
Resumo:
Optical coherence tomography (OCT) is a well-established image modality in ophthalmology and used daily in the clinic. Automatic evaluation of such datasets requires an accurate segmentation of the retinal cell layers. However, due to the naturally low signal to noise ratio and the resulting bad image quality, this task remains challenging. We propose an automatic graph-based multi-surface segmentation algorithm that internally uses soft constraints to add prior information from a learned model. This improves the accuracy of the segmentation and increase the robustness to noise. Furthermore, we show that the graph size can be greatly reduced by applying a smart segmentation scheme. This allows the segmentation to be computed in seconds instead of minutes, without deteriorating the segmentation accuracy, making it ideal for a clinical setup. An extensive evaluation on 20 OCT datasets of healthy eyes was performed and showed a mean unsigned segmentation error of 3.05 ±0.54 μm over all datasets when compared to the average observer, which is lower than the inter-observer variability. Similar performance was measured for the task of drusen segmentation, demonstrating the usefulness of using soft constraints as a tool to deal with pathologies.
Resumo:
The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.
Resumo:
OBJECTIVE: To develop a novel application of a tool for semi-automatic volume segmentation and adapt it for analysis of fetal cardiac cavities and vessels from heart volume datasets. METHODS: We studied retrospectively virtual cardiac volume cycles obtained with spatiotemporal image correlation (STIC) from six fetuses with postnatally confirmed diagnoses: four with normal hearts between 19 and 29 completed gestational weeks, one with d-transposition of the great arteries and one with hypoplastic left heart syndrome. The volumes were analyzed offline using a commercially available segmentation algorithm designed for ovarian folliculometry. Using this software, individual 'cavities' in a static volume are selected and assigned individual colors in cross-sections and in 3D-rendered views, and their dimensions (diameters and volumes) can be calculated. RESULTS: Individual segments of fetal cardiac cavities could be separated, adjacent segments merged and the resulting electronic casts studied in their spatial context. Volume measurements could also be performed. Exemplary images and interactive videoclips showing the segmented digital casts were generated. CONCLUSION: The approach presented here is an important step towards an automated fetal volume echocardiogram. It has the potential both to help in obtaining a correct structural diagnosis, and to generate exemplary visual displays of cardiac anatomy in normal and structurally abnormal cases for consultation and teaching.
Resumo:
Online reputation management deals with monitoring and influencing the online record of a person, an organization or a product. The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly have a disastrous influence on the online reputation of some of the entities. This dissertation can be split into three parts: In the first part, possible fuzzy clustering applications for the Social Semantic Web are investigated. The second part explores promising Social Semantic Web elements for organizational applications,while in the third part the former two parts are brought together and a fuzzy online reputation analysis framework is introduced and evaluated. Theentire PhD thesis is based on literature reviews as well as on argumentative-deductive analyses.The possible applications of Social Semantic Web elements within organizations have been researched using a scenario and an additional case study together with two ancillary case studies—based on qualitative interviews. For the conception and implementation of the online reputation analysis application, a conceptual framework was developed. Employing test installations and prototyping, the essential parts of the framework have been implemented.By following a design sciences research approach, this PhD has created two artifacts: a frameworkand a prototype as proof of concept. Bothartifactshinge on twocoreelements: a (cluster analysis-based) translation of tags used in the Social Web to a computer-understandable fuzzy grassroots ontology for the Semantic Web, and a (Topic Maps-based) knowledge representation system, which facilitates a natural interaction with the fuzzy grassroots ontology. This is beneficial to the identification of unknown but essential Web data that could not be realized through conventional online reputation analysis. Theinherent structure of natural language supports humans not only in communication but also in the perception of the world. Fuzziness is a promising tool for transforming those human perceptions intocomputer artifacts. Through fuzzy grassroots ontologies, the Social Semantic Web becomes more naturally and thus can streamline online reputation management.
Resumo:
PURPOSE Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.