915 resultados para textile effluents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Channel catfish ponds are treated with salt (sodium chloride) to increase chloride concentration and prevent nitrite toxicity in fish. A survey indicated that most farmers try to maintain chloride concentration of 50 to 100 mg/L in ponds by annual salt applications. Averages and standard deviations for selected water quality variables in salt-treated ponds were as follows: chloride, 87.2 ± 37.5 mg/L; total dissolved solids (TDS), 336 ± 96 mg/L; specific conductance, 512 ± 164 μmhos/cm. Maximum values were 189 mg/L for chloride, 481 mg/L for TDS, and 825 μmhos/cm for specific conductance. Good correlations between specific conductance values and both chloride and TDS concentrations suggest that specific conductance can be a rapid method for estimating concentrations of these two variables in surface water. The maximum limit for chloride concentration in Alabama streams allowed by the Alabama Department of Environmental Management is 230 mg/L. The usual recommended upper limit of TDS for protection of aquatic life in freshwater streams is 1,000 mg/L. Based on the observed relationship between TDS concentration and specific conductance in Alabama catfish ponds, 1,000 mg/L TDS corresponds to 1,733 μmhos/cm specific conductance. It is unlikely that effluents from salt-treated catfish ponds would violate the in-stream chloride standard of 230 mg/L or harm aquatic life in streams. Nevertheless, chloride concentrations in ponds should be measured before salt application as a safe guard against excessive salt application and chloride concentrations above the in-stream chloride standard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comet assay has been described as an efficient tool for the detection of changes in the DNA molecule of cells exposed to contaminating agents in vivo and in vitro. The possible environmental contamination due to the persistence of chromium residues from tannery effluents was determined in the waters of the Córrego dos Bagres stream, Municipal district of Franca/SP, by the comet assay on CHO-K1 cells. Water samples were collected during the four seasons of the year 2001 at three distinct stations along the river. The data suggest that the comet test showed good sensitivity for the environmental monitoring of these waters and indicated that this test can be efficient for the determination of the quality of waters contaminated with effluents containing heavy metal residues such as chromium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A disposable pencil graphite electrode modified with dsDNA was used in combination with square wave voltammetry in order to evaluate the interaction of DNA with the textile dyes Disperse Orange 1 (DO1) and Disperse Red 1 (DR1), and with the products of their electrolysis. Significant changes in the characteristic oxidation peaks of the guanine and adenine moieties of immobilized dsDNA were observed after incubation of the modified electrode for 180 s in solutions of the dyes in their original forms. The same was observed using the electrolysis products obtained by oxidation and reduction conversions. The oxidation peak currents of the guanine and adenine moieties decreased when the concentrations of DO1 and DR1 were increased up to 5.0 × 10 -6 and 1.0 × 10-6 mol L-1, respectively; the signal decreases were more pronounced after interaction with the oxidized dyes, compared to the reduced compounds. The interactions between DNA and DO1, DR1, and the electrolyzed dyes were further investigated by UV-vis spectrophotometry in solution, and different effects such as hypochromism and hyperchromism were observed in the resulting DNA spectra. The investigated interactions showed clear evidence of changes in the DNA structure, and suggested a predominant intercalation mode leading to damage in the biomolecule. © 2013 Elsevier B.V.