958 resultados para tectonic geomorphology
Resumo:
The Sub-Numidian Tertiary stratigraphic record of the Tunisian Tell has been updated by means of 11 stratigraphic successions belonging to the Maghrebian Flysch Basin (N-African Margin) reconstructed in the Tunisian Numidian Zone and the Triassic Dome Zone. The Sub-Numidian successions studied range from the Paleocene to the Priabonian, representing a major change in the sedimentation from the latest Cretaceous onwards. The Sub-Numidian succession and the Numidian Formation are separated by an Intermediate interval located between two erosive surfaces (local paraconformities). The stratigraphic analysis has revealed diachronous contacts between distal slope to basinal sedimentary formation, allowing the identification of an Early Eocene Chouabine marker bed. The integrated biostratigraphic analysis made by means of planktonic foraminifera and calcareous nannoplankton updates the ages of the formations studied, proving younger than previously thought. The new definition of the Sub-Numidian stratigraphy enables a better correlation with equivalent successions widely outcropping along the Maghrebian, Betic, and southern Apennine Chains. The study proposes a new evolutionary tectonic/sedimentary model for this Tunisian sector of the Maghrebian Chain during the Paleogene after the Triassic–Cretaceous extensional regime. This paleogeographic reorganization is considered a consequence of the beginning of the tectonic inversion (from extensional to compressional), leading to the end of the preorogenic sedimentation. Our results suggest a non-tabular stratigraphy (marked by lateral changes of lithofacies, variable thicknesses, and the presence of diachronous boundaries) providing significant elements for a re-evaluation of active petroleum systems on the quality, volume, distribution, timing of oil generation, and on the migration and accumulation of the oil.
Resumo:
The sedimentary record of the Tarcău and Vrancea Nappes, belonging to the flysch accretionary zone of the Eastern Carpathians (Eastern Carpathian Outer Flysch), registered Cretaceous-Miocene events during the evolution of the Moldavidian Basin. Our biostratigraphic data indicate that the deposits studied are younger than previously reported. The comparison of sedimentary record studied with the Late Cretaceous-Early Miocene global eustatic curve indicates that eustatic factor played a secondary role, after the tectonic one. Four main stages of different processes influenced by tectonics are recognized in the sedimentary record: (1) Campanian-Maastrichtian-earliest Paleocene; (2) latest Ypresian-Lutetian; (3) late Chattian-earliest Aquitanian, and (4) late Aquitanian-early Burdigalian. The late Chattian- earliest Aquitanian and late Aquitanian-early Burdigalian records indicate a high tectonic influence. The first event was related to the foredeep stage of the sedimentary domain studied, and the second one to the deformation stage of the same domain. The sedimentary records of tectonic influence recognized during these stages are useful tools for geodynamic reconstructions. The stratigraphic correlation of Tarcău and Vrancea sedimentary records are used
Resumo:
Six Paleogene-Aquitanian successions have been reconstructed in the Alicante area (eastern External Betic Zone). The lithofacies association evidences “catastrophic” syn-sedimentary tectonic processes consisting of slumps, mega-olisthostromes, “pillow-beds” and turbiditic deposits. This kind of sedimentation is related to unconformity surfaces delimiting sequence and para-sequence cycles in the stratigraphic record. The data compiled have enabled the reconstruction of the Paleogene-Aquitanian paleogeographic and geodynamic evolution of this sector of the External Betics. During the Eocene the sedimentary basin is interpreted as a narrow trough affected by (growth) folding related to blind thrust faulting with a source area from the north-western margin, while the southeastern margin remained inactive. During the Oligocene-Aquitanian, the sourcing margin becames the southeastern margin of the basin affected by a catastrophic tectonic. The activity of the margins is identified from specific sediment source areas for the platform-slope-trough system and from tectofacies analysis. The southeastern South Iberian Margin is thought to be closer to the Internal Betic Zone, which was tectonically pushing towards the South Iberian Margin. This pushing could generate a lateral progressive elimination of subbetic paleogeographic domains in the eastern Betics. This geodynamic frame could explain the development of such “catastrophic” tectono-sedimentary processes during the Late Oligocene-Early Miocene.
Resumo:
The anisotropy of magnetic susceptibility (AMS) has been measured with low- and high-field methods, in deformed carbonate rocks along the Morcles nappe shear zone (Helvetic Alps). High-field measurements at room temperature and 77 K enable the separation of the ferrimagnetic, paramagnetic and diamagnetic anisotropy. The ferrimagnetic sub-fabric is generally insignificant in these rocks, contributing less than 10% to the total AMS. AMS results for both the separated diamagnetic and paramagnetic subfabrics are consistent with the regional shear movement in the late-stage formation of the Helvetic nappes, as seen in the Morcles nappe, whose inverted limb indicate shear displacement towards the northwest. The diamagnetic anisotropy correlates well quantitatively with the calculated magnetic anisotropy based on the calcite texture. There is a gradational change in the degree of anisotropy related to the strain gradient along the shear zone. A more complex magnetic fabric, resulting from partial overprinting due to displacement along the Simplon–Rhône fault, is evident at one site near the root zone of the nappe. Partial overprinting of the magnetic fabric appears to have taken place in two locations farther up the shear zone as well. This late phase deformation is associated with recent exhumation of the Mont Blanc and Belledonne external massifs and orogen parallel extension, and is reflected by the AMS. Rocks with bulk susceptibility ∼0 SI, and simple mineral compositions are ideal for low temperature high-field torque, as this method helps to enhance the paramagnetic susceptibility and anisotropy, which may otherwise be masked by the mixed magnetic contributions of the composite magnetic fabric.
Resumo:
The major geologic units of the Itremo region in central Madagascar include: (1) upper amphibolite to granulite facies (higher grade) Precambrian rocks, mainly para- and orthogneisses, and migmatites; (2) the newly defined Itremo Nappes, a fold-and-thrust belt containing the Proterozoic Itremo Group sediments, metamorphosed at greenschist to lower amphibolite facies (lower grade) conditions: (3) Middle Neoproterozoic and Late Neoproterozoic-Cambrian intrusives. The stratigraphic succession of the Itremo Group in the eastern part of the Itremo region is, from bottom to top: quartzites, metapelites, metacarbonates and metapelites overlain by metacarbonates. During D1 the Itremo Group sediments were detached from their continental substratum, deformed into a fold-and-thrust nappe (Itremo Nappes), and transported on top of higher grade rocks that are intruded by Middle Neoproterozoic (c. 797–780 Ma) granites and gabbros. A second phase of deformation shortening (D2) affected both the Itremo Sedimentary Nappes and structurally underlying higher-grade rocksunits, and formed large-scale N-S-trending F2 folds. S1 axial plane foliations in Itremo Group sediments are truncated by Late Neoproterozoic-Cambrian granites (c. 570–540 Ma). The age of the formation of the Itremo Nappes is not well constrained: they formed in Neoproterozoic times between 780 and 570 Ma.
Resumo:
The Itremo region in Central Madagascar comprises a deformed metasedimentary sequence (Itremo Group) that has undergone greenschist to lower amphibolite facies metamorphism. During a first phase of deformation (D1) Itremo Group sediments were deformed into a fold-and-thrust belt and transported toward the E to NE on top of migmatitic gneisses rocks of Anatananarivo block. A second phase of deformation (D2) affected both the fold-and-thrust belt and structurally underlying units, and formed large-scale N-S trending folds with steeply dipping axial planes. A Late Neoproterozoic Th–U–Pb XRF monazite age (565±17 Ma) dates the emplacement of a granite that truncates first-phase structures in the Itremo Group, and indicates that the fold-and-thrust belt formed prior to ≈565 Ma. Th–U–Pb electron microprobe dating was applied to elongated monazites that lie within the first-phase foliation of Itremo Group metapelites. The detrital cores of zoned monazites reveal two distinct age populations at ∼2000 and 1700 Ma, the latter age giving a maximum depositional age for the Itremo Group. Statistical analysis of ages determined from the rims of zoned monazites and from unzoned monazites indicates three Late Proterozoic–Early Paleozoic monazite growth events at about 565–540, 500 and 430 Ma. The oldest age population is contemporaneous within error, with the intrusion of the dated granite. The two younger age populations are found both in the Th–U–Pb and Ar–Ar data; together with the perturbation of the Rb–Sr system we interpret both ages as due to alteration related to fluid circulation events, possibly connected to the emplacement of pegmatite fields in Central Madagascar. Syn-D1 tectonic growth of contact metamorphism minerals such as andalusite has been observed locally in metapelites along the margin of Middle Neoproterozoic (≈800 Ma) granites, suggesting that D1 in the Itremo Group is contemporaneous with the intrusion of granites at ≈800 Ma. The N-S trending D2 folds are associated with ≈E-W shortening during the final assembly of Gondwana in Late Neoproterozoic–Early Cambrian times.
Resumo:
"November 1969."
Resumo:
"February 1971."
Resumo:
"June 1972."
Resumo:
"July 1974."
Resumo:
"March 1974."
Resumo:
"July 1975."