917 resultados para system parameter identification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Yeasts are becoming a common cause of nosocomial fungal infections that affect immunocompromised patients. Such infections can evolve into sepsis, whose mortality rate is high. This study aimed to evaluate the viability of Candida species identification by the automated system Vitek-Biomerieux (Durham, USA). Ninety-eight medical charts referencing the Candida spp. samples available for the study were retrospectively analyzed. The system Vitek-Biomerieux with Candida identification card is recommended for laboratory routine use and presents 80.6% agreement with the reference method. By separate analysis of species, 13.5% of C. parapsilosis samples differed from the reference method, while the Vitek system wrongly identified them as C. tropicalis, C. lusitaneae or as Candida albicans. C. glabrata presented a discrepancy of only one sample (25%), and was identified by Vitek as C. parapsilosis. C. guilliermondii also differed in only one sample (33.3%), being identified as Candida spp. All C. albicans, C. tropicalis and C. lusitaneae samples were identified correctly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a four-parameter family of point interactions in one dimension. This family is a generalization of the usual delta-function potential. We examine a system consisting of many particles of equal masses that are interacting pairwise through such a generalized point interaction. We follow McGuire who obtained exact solutions for the system when the interaction is the delta-function potential. We find exact bound states with the four-parameter family. For the scattering problem, however, we have not been so successful. This is because, as we point out, the condition of no diffraction that is crucial in McGuire's method is nor satisfied except when the four-parameter family is essentially reduced to the delta-function potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of algorithms for active vibration control in flexible structures became an area of enormous interest for some researchers due to the innumerable requirements for better performance in mechanical systems, as for instance, aircrafts and aerospace structures. Intelligent systems, constituted for a base structure with sensors and actuators connected, are capable to guarantee the demanded conditions, through the application of diverse types of controllers. For the project of active controllers it is necessary, in general, to know a mathematical model that enable the representation in the space of states, preferential in modal coordinates to permit the truncation of the system and reduction in the order of the controllers. For practical applications of engineering, some mathematical models based in discrete-time systems cannot represent the physical problem, therefore, techniques of identification of system parameters must be used. The techniques of identification of parameters determine the unknown values through the manipulation of the input (disturbance) and output (response) signals of the system. Recently, some methods have been proposed to solve identification problems although, none of them can be considered as being universally appropriate to all the situations. This paper is addressed to an application of linear quadratic regulator controller in a structure where the damping, stiffness and mass matrices were identified through Chebyshev's polynomial functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The education designed and planned in a clear and objective manner is of paramount importance for universities to prepare competent professionals for the labor market, and above all can serve the population with an efficient work. Specifically, in relation to engineering, conducting classes in the laboratories it is very important for the application of theory and development of the practical part of the student. The planning and preparation of laboratories, as well as laboratory equipment and activities should be developed in a succinct and clear way, showing to students how to apply in practice what has been learned in theory and often shows them why and where it can be used when they become engineers. This work uses the MATLAB together with the System Identification Toolbox and Arduino for the identification of linear systems in Linear Control Lab. MATLAB is a widely used program in the engineering area for numerical computation, signal processing, graphing, system identification, among other functions. Thus the introduction to MATLAB and consequently the identification of systems using the System Identification Toolbox becomes relevant in the formation of students to thereafter when necessary to identify a system the base and the concept has been seen. For this procedure the open source platform Arduino was used as a data acquisition board being the same also introduced to the student, offering them a range of software and hardware for learning, giving you every day more luggage to their training

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A plan to identify the individual farm upon which hogs reaching markets are produced has been developed in connection with the efforts toward eradicating tuberculosis among farm animals. While primarily intended as a means of tracing back to determine sources of disease infection, the system of tattooing which is being developed has other significant possibilities. With the growing emphasis on quality products in the market, it is only fair that the producers of high quality commodities receive the premiums paid by processors and consumers. Health of farm animals is a quality factor. The producer of healthy hogs should be rewarded. Likewise, the producer of diseased hogs profits from knowledge that his animals are infected and can institute efforts to control that source fo loss. This 1928 extension circular covers what each letter of a tattoo stands for, where it is to be placed on an animal, and material used in tattooing.