966 resultados para synthesis and integrative research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the design and synthesis of a variety of functionalised phosphine oxides and sulfides, based on the structure of trioctylphosphine oxide, synthesised for the purpose of surface modification of quantum dots. The ability of the ligands to modify the surface chemistry via displacement of the original hexadecylamine capping layer of quantum dots was evaluated. Finally the surface modified quantum dots were investigated for enhancement in their inherent properties and improved compatibility with the various applications for which they were initially designed. Upon the commencement of research involving quantum dots it became apparent that more information on their behaviour and interaction with the environment was required. The limits of the inherent stability of hexadecylamine capped quantum dots were investigated by exposure to a number of different environments. The effect upon the stability of the quantum dots was monitored by changes in the photoluminescence ability of their cores. Subtle differences between different batches of quantum dots were observed and the necessity to account for these in future applications noted. Lastly the displacement of the original hexadecylamine coating with the "designer" functionalised ligands was evaluated to produce a set of conditions that would result in the best possible surface modification. A general procedure was elucidated however it was discovered that each displacement still required slight adjustment by consideration of the other factors such as the difference in ligand structure and the individuality of the various batches of quantum dots. This thesis also describes a procedure for the addition of a protective layer to the surface of quantum dots by cross-linking the functionalised ligands bound to the surface via an acyclic diene metathesis polymerisation. A detailed description of the problems encountered in the analysis of these materials combined with the use of novel techniques such as diffusion ordered spectroscopy is provided as a means to overcome the limitations encountered. Finally a demonstration of the superior stability, upon exposure to a range of aggressive environments of these protected materials compared with those before cross-linking provided physical proof of the cross-linking process and the advantages of the cross-linking modification. Finally this thesis includes the presentation of initial work into the production of luminescent nanocrystal encoded resin beads for the specific use in solid phase combinatorial chemistry. Demonstration of the successful covalent incorporation of quantum dots into the polymeric matrices of non-functionalised and functionalised resin beads is described. Finally by preliminary work to address and overcome the possible limitations that may be encountered in the production and general employment of these materials in combinatorial techniques is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholecystokinin (CCK) is a peptide hormone, present in the alimentary and the CNS. It is the most abundant peptide in the brain. CCK has been implicated in a number of disorders. The link between CCK and anxiety was the basis for this research. A comprehensive discussion on the many types of CCK receptor antagonists is included. For the drug discovery process, a number of synthetic approaches have been investigated and alternative chemical approaches developed. 1,4-Benzodiazepine analogues were prepared, with substitutents In the 1,2 & 3- position of the benzodiazepine scaffold varied, and substituted 3-anilino benzodiazepines exhibited the greatest in vitro activity towards the CCKA receptor subtype. Through extensive screening, pyrazolinone-ureido derivatives were identified, optimised, SAR studied and re-screened. A comprehensive in vivo study on the most active analogue is included, which has a number of common structural features with L-36S, 260 including activity. Pyrazolinone-amide derivatives, bearing the tryptophan moiety were equally active. A number of existing and novel furan- 2(SH)-one building blocks were prepared, from which a selected mini-library of 4- amino-substituted furan-2(SH)-ones were prepared and evaluated. All synthesised compounds were evaluated in a CCK radiolabelled binding assay (CCKA & CCKB), with compounds demonstrating receptor selectivity and lead structures being discovered. The work in this thesis has identified a number of highly active prime structures, from which further investigations are essential in providing more in vitro & in vivo data and the need to prepare more analogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research has shown that the naturally occurring reactive electrophilic species (RES), 12-oxophytodienoic acid (OPDA), not only serves as a precursor for jasmonic acid but is also a potent antifungal compound. However, both the low amount present in plants and the multistep synthesis required to produce this compound on a scale viable for agrochemical use currently limits its practical value. The aim of this research was to generate a range of molecular mimics of OPDA with a minimum number of synthetic steps and screen for antifungal activity. Synthetic 4-octyl-cyclopentenone containing the cyclopentenone ring and an eight carbon alkyl chain was found to show the highest in vitro antifungal activity against C. herbarum and B. cinerea with minimum inhibition concentration (MIC) of 100-200µM. This indicates that structurally simplified 4-octyl-cyclopentenone can be successfully synthesised to mimic the antifungal activity of OPDA against specific fungal strains. Application of 4-octyl-cyclopentenone could act as surfactant by disrupting and disorganising the lipid membrane non-specifically, resulting in the leakage of potassium ions, which was the proposed mode of action of this compound. However, the sensitivity of fungi to this compound is not correlated to the lipid composition of fungal spores. (E)-2-alkenals were also studied for their antimicrobial activity and (E)-2-undecenal was found to have the highest antimicrobial activity against a range of pathogens. The hydrophilic moiety (the a,ß-unsaturated carbonyl group), common to both (E)-2-undecenal and 4-octyl-cyclentenone is essential to their bioactivity, and the hydrophobic moiety plays an important role in their antimicrobial activities. 4-Octyl-cyclopentenone showed no visible toxicity to the test plant, Arabidopsis thaliana, suggesting that its high antifungal activity against Botrytis and Cladosporium could be exploited for commercialisation as a new generation of agrochemical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research project is concerned with the development and use of eco-friendly reaction media for a variety of organic transformations in the preparation of organic chemicals with potential pharmaceutical applications. These chemicals will then be investigated for their anti-cancer, anti-bacterial and anti-inflammation properties. In this project, different methods were used to synthesize various kinds of ionic liquids. Some new ionic liquids were prepared. In addition, Knoevenagel condensation reactions were investigated in RTILs. For the first time, some neutral ionic liquids such as [BMIM]+[BF4]-, [MeOEtMIM]+[CF3COO]- acted as both catalysts and solvents to promote Knoevenagel reactions. All these experiments indicated that RTILs have a great potential as alternative solvents in synthetic chemistry. Furthermore, nucleoside chemistry is an important research area in drug discovery. Various chemical modified nucleosides have therapeutic activities. However, these compounds usually have poor solubility in common organic solvents. RTILs such as [MeOEtMIM]+[CH3SO3]- have good dissolving capability for these chemicals. A range of thio-substituted nucleobases and nucleosides with potential pharmaceutical applications have been synthesized in several RTILs. These chemicals will then be investigated for their anti-cancer properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research project is concerned with the design, synthesis and development of new phosphodiesterase 5 (PDE5) inhibitors with improved selectivities and lower toxicities. Two series of a 5 member and a 6 member ring fused heterocyclic compounds were designed, and synthesized. By alteration of starting materials and fragments, two virtual libraries, each is consisted of close to hundred compounds, were obtained successfully. The screening of sexual stimulation activity with rabbits demonstrated both groups of compounds were able to stimulate rabbit penile erection significantly. The following toxicity studies revealed 2-(substituted-sulfonylphenyl)-imidazo [1,5-a]-1,3,5-triazine-4-(3H)-one group possessed an unacceptable toxicity with oral LD50 about 200mg/kg; while 2-(substituted-sulfonylphenyl)-pyrrolo[2,3-d]pyrimidin-4-one group showed an acceptable toxicity with oral LD50 over 2000mg/kg. The continued bioactivity studies showed yonkenafil, the representative of 2-(substituted-sulfonylphenyl)-pyrrolo[2,3-d]pyrimidin-4-one group, has a better selectivity towards PDE5 and PDE6 than sildenafil and a better overall profile of sexual stimulation on animals than sildenafil. Chronic toxicity studies of yonkenafil further confirmed yonkenafil did not cause any serious side effect and damage on animal models and most actions were explainable. Based on evidences of the above studies, yonkenafil were recommended to enter clinical trials by the regulation authority of China, SFDA. Currently yonkenafil has been through the Phase I clinical trials and ready to progress into Phase II. Hopefully, yonkenafil will provide an alternative to the ED patients in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(L-lactide-co-ε-caprolactone) 75:25% mol, P(LL-co-CL), was synthesized via bulk ring-opening polymerisation (ROP) using a novel tin(II)alkoxide initiator, [Sn(Oct)]2DEG, at 130oC for 48 hrs. The effectiveness of this initiator was compared withthe well-known conventional tin(II) octoateinitiator, Sn(Oct)2. The P(LL-co-CL) copolymersobtained were characterized using a combination of analytical technique including: nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and gel permeation chromatography (GPC). The P(LL-co-CL) was melt-spun into monofilament fibres of uniform diameter and smooth surface appearance. Modification of the matrix morphology was then built into the as-spun fibresvia a series of controlled off-line annealing and hot-drawing steps. © (2014) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Néel temperature TN is significantly lower than the Curie-Weiss temperature (:&thetas;: ∼ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Néel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a μ-spin rotation/relaxation (μ+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in the AF phase. The results from inelastic neutron scattering show that spin waves have a clear dispersion along a-axis but not along c-axis, indicating spin anisotropy. This work finds the strong spin-lattice coupling in this novel complex material. The interplay between the two degrees of freedom results an interesting phase diagram. Further research is needed when large single crystal samples are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rainbow smelt (Osmerus mordax) is an anadromous teleost that produces type II antifreeze protein (AFP) and accumulates modest urea and high glycerol levels in plasma and tissues as adaptive cryoprotectant mechanisms in sub-zero temperatures. It is known that glyceroneogenesis occurs in liver via a branch in glycolysis and gluconeogenesis and is activated by low temperature; however, the precise mechanisms of glycerol synthesis and trafficking in smelt remain to be elucidated. The objective of this thesis was to provide further insight using functional genomic techniques [e.g. suppression subtractive hybridization (SSH) cDNA library construction, microarray analyses] and molecular analyses [e.g. cloning, quantitative reverse transcription - polymerase chain reaction (QPCR)]. Novel molecular mechanisms related to glyceroneogenesis were deciphered by comparing the transcript expression profiles of glycerol (cold temperature) and non-glycerol (warm temperature) accumulating hepatocytes (Chapter 2) and livers from intact smelt (Chapter 3). Briefly, glycerol synthesis can be initiated from both amino acids and carbohydrate; however carbohydrate appears to be the preferred source when it is readily available. In glycerol accumulating hepatocytes, levels of the hepatic glucose transporter (GLUT2) plummeted and transcript levels of a suite of genes (PEPCK, MDH2, AAT2, GDH and AQP9) associated with the mobilization of amino acids to fuel glycerol synthesis were all transiently higher. In contrast, in glycerol accumulating livers from intact smelt, glycerol synthesis was primarily fuelled by glycogen degradation with higher PGM and PFK (glycolysis) transcript levels. Whether initiated from amino acids or carbohydrate, there were common metabolic underpinnings. Increased PDK2 (an inhibitor of PDH) transcript levels would direct pyruvate derived from amino acids and / or DHAP derived from G6P to glycerol as opposed to oxidation via the citric acid cycle. Robust LIPL (triglyceride catabolism) transcript levels would provide free fatty acids that could be oxidized to fuel ATP synthesis. Increased cGPDH (glyceroneogenesis) transcript levels were not required for increased glycerol production, suggesting that regulation is more likely by post-translational modification. Finally, levels of a transcript potentially encoding glycerol-3-phosphatase, an enzyme not yet characterized in any vertebrate species, were transiently higher. These comparisons also led to the novel discoveries that increased G6Pase (glucose synthesis) and increased GS (glutamine synthesis) transcript levels were part of the low temperature response in smelt. Glucose may provide increased colligative protection against freezing; whereas glutamine could serve to store nitrogen released from amino acid catabolism in a non-toxic form and / or be used to synthesize urea via purine synthesis-uricolysis. Novel key aspects of cryoprotectant osmolyte (glycerol and urea) trafficking were elucidated by cloning and characterizing three aquaglyceroporin (GLP)-encoding genes from smelt at the gene and cDNA levels in Chapter 4. GLPs are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. The highlight was the discovery that AQP10ba transcript levels always increase in posterior kidney only at low temperature. This AQP10b gene paralogue may have evolved to aid in the reabsorption of urea from the proximal tubule. This research has contributed significantly to a general understanding of the cold adaptation response in smelt, and more specifically to the development of a working scenario for the mechanisms involved in glycerol synthesis and trafficking in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described in this thesis revolves around the 1,1,n,ntetramethyl[n](2,11)teropyrenophanes, which are a series of [n]cyclophanes with a severely bent, board-shaped polynuclear aromatic hydrocarbons (PAH). The thesis is divided into seven Chapters. The first Chapter conatins an overview of the seminal work on [n]cyclophanes of the first two members of the “capped rylene” series of PAHs: benzene and pyrene. Three different general strategies for the synthesis of [n]cyclophanes are discussed and this leads in to a discussion of some slected syntheses of [n]paracyclopahnes and [n](2,7)pyrenophanes. The chemical, structural, spectroscopic and photophysical properties of these benzene and pyrene-derived cyclophanes are discussed with emphasis on the changes that occur with changes in the structure of the aromatic system. Chapter 1 concludes with a brief introduction to [n]cyclophanes of the fourth member of the capped rylene series of PAHs: teropyrene. The focus of the work described in Chapter 2 is the synthesis of of 1,1,n,ntetramethyl[n](2,11)teropyrenophane (n = 6 and 7) using a double-McMurry strategy. While the synthesis 1,1,7,7-tetramethyl[7](2,11)teropyrenophane was successful, the synthesis of the lower homologue 1,1,6,6-tetramethyl[6](2,11)teropyrenophane was not. The conformational behaviour of [n.2]pyrenophanes was also studied by 1H NMR spectroscopy and this provided a conformation-based rationale for the failure of the synthesis of 1,1,6,6-tetramethyl[6](2,11)teropyrenophane. Chapter 3 contains details of the synthesis of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7-9) using a Wurtz / McMurry strategy, which proved to be more general than the double McMurry strategy. The three teropyrenophanes were obtained in ca. 10 milligram quantities. Trends in the spectroscopic properties that accompany changes in the structure of the teropyrene system are discussed. A violation of Kasha’s rule was observed when the teropyrenophanes were irradiated at 260 nm. The work described in the fourth Chapter concentrates on the development of gram-scale syntheses of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) using the Wurtz / McMurry strategy. Several major modifications to the orginal synthetic pathway had to be made to enable the first several steps to be performed comfortably on tens of grams of material. Solubility problems severely limited the amount of material that could be produced at a late stage of the synthetic pathways leading to the evennumbered members of the series (n = 8, 10). Ultimately, only 1,1,9,9- tetramethyl[9](2,11)teropyrenophane was synthesized on a multi-gram scale. In the final step in the synthesis, a valence isomerization / dehydrogenation (VID) reaction, the teropyrenophane was observed to become unstable under the conditions of its formation at n = 8. The synthesis of 1,1,10,10-tetramethyl[10](2,11)teropyrenophane was achieved for the first time, but only on a few hundred milligram scale. In Chapter 5, the results of an investigation of the electrophilic aromatic bromination of the 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) are presented. Being the most abundant cyclophane, most of the work was performed on 1,1,9,9-tetramethyl[9](2,11)teropyrenophane. Reaction of this compound with varying amounts of of bromine revealed that bromination occurs most rapidly at the symmetryrelated 4, 9, 13 and 18 positions (teropyrene numbering) and that the 4,9,13,18- tetrabromide could be formed exclusively. Subsequent bromination occurs selectively on the symmetry-related 6, 7, 15 and 16 positions (teropyrene numbering), but considerably more slowly. Only mixtures of penta-, hexa-, hepta and octabromides could be formed. Bromination reactions of the higher and lower homologues (n = 7, 8 and 10) revealed that the reactivity of the teropyrene system increased with the degree of bend. Crystal structures of some tetra-, hexa-, hepta- and octa-brominated products were obtained. The goal of the work described in Chapter 6 is to use 1,1,9,9- tetramethyl[9](2,11)teropyrenophane as a starting material for the synthesis of warped nanographenophanes. A bromination, Suzuki-Miyaura, cyclodehydrogenation sequence was unsuccessful, as was a C–H arylation / cyclodehydrogenation approach. Itami’s recently-developed K-region-selective annulative -extension (APEX) reaction proved to be successful, affording a giant [n]cyclophane with a C84 PAH. Attempted bay-region Diels-Alder reactions and some cursory host-guest chemistry of teropyrenophanes are also discussed. In Chapter 7 a synthetic approach toward a planar model compound, 2,11-di-tbutylteropyrene, is described. The synthesis could not be completed owing to solubility problems at the end of the synthetic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of pyrazole and isoquinoline-5,8-dione scaffolds in medical chemistry is underlined by the high number of drugs currently on trading that contains these active ingredients. Due to their cytotoxic capability, the interest of medicinal chemists in these heterocyclic rings has grown exponentially especially, for cancer therapy. In this project, the first synthesis of pyrazole-fused isoquinoline-5,8-diones has been developed. 1,3-Dipolar cycloaddition followed by oxidative aromatization, established by our research group, has been employed. Screening of reaction conditions and characterization studies about the regioselectivity have been successfully performed. A remote control of regioselectivity, to achieve the two possible regioisomers has been accomplished. Through Molecular Docking studies, Structure-Activity relationship of differently substituted scaffolds containing our central core proved that a family of PI3K inhibitors have been discovered. Finally, in order to verify the promising antitumor activity, a first test of cell viability in vitro on T98G cell line of a solid brain tumor, the Glioblastoma Multiforme, showed cytotoxic inhibition comparable to currently trade anticancer drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in the fields of ceramic pigments is oriented towards the enlargement of the chromatic set of colors together with a replacement for more expensive and less stable organic pigments. Novel non-toxic inorganic pigments have been required to answer environmental laws to remove elements like lead, chromium, cobalt entering in the composition of usual pigments widely used in paints and plastics. Yellow is particularly an important color in the pigment industry and consumption of yellow exceeds that of any other colored pigments. Apart from this, high infrared reflective pigments are now in great demand for usage in coatings, cement pavements, automotives and camouflage applications. They not only impart color to an object, but also reflect the invisible heat from the object to minimize heat build–up, when exposed to solar radiation. With this in view, the present work aims at developing new functional yellow pigments for these applications. A series of IR reflecting yellow pigments have been synthesized and analyzed for their crystalline structure, morphological, composition and optical characteristics, coloring and energy saving applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.