908 resultados para surface atomic structure
Resumo:
In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.
Resumo:
We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 x 1 m digital elevation model, and a 15 x 15 m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m(-3), with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m-3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and NM) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.
Resumo:
We analyze the influence of the single-particle structure on the neutron density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence shell neutrons on the tail of the neutron density distribution is discussed.
Resumo:
Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.
Resumo:
Kirjallisuusarvostelu
Resumo:
The understanding and engineering of bismuth (Bi) containing semiconductor surfaces are signi cant in the development of novel semiconductor materials for electronic and optoelectronic devices such as high-e ciency solar cells, lasers and light emitting diodes. For example, a Bi surface layer can be used as a surfactant which oats on a III-V compound-semiconductor surface during the epitaxial growth of IIIV lms. This Bi surfactant layer improves the lm-growth conditions if compared to the growth without the Bi layer. Therefore, detailed knowledge of the properties of the Bi/III-V surfaces is needed. In this thesis, well-de ned surface layers containing Bi have been produced on various III-V semiconductor substrates. The properties of these Bi-induced surfaces have been measured by low-energy electron di raction (LEED), scanning-tunneling microscopy and spectroscopy (STM), and synchrotron-radiation photoelectron spectroscopy. The experimental results have been compared with theoretically calculated results to resolve the atomic structures of the studied surfaces. The main ndings of this research concern the determination of the properties of an unusual Bi-containing (2×1) surface structure, the discovery and characterization of a uniform pattern of Bi nanolines, and the optimization of the preparation conditions for this Bi-nanoline pattern.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
The objective of the thesis is to study cerium oxide thin films grown by the atomic layer deposition (ALD) for soot removal. Cerium oxide is one of the most important heterogeneous catalysts and can be used in particulate filters and sensors in a diesel exhaust pipe. Its redox/oxidation properties are a key factor in soot oxidation. Thus, the cerium oxide coating can help to keep particulate filters and sensors clean permanently. The literature part of the thesis focuses on the soot removal, introducing the origin and structure of soot, reviewing emissions standards for diesel particulate matter, and presenting methods and catalysts for soot removal. In the experimental part the optimal ALD conditions for cerium oxide were found, the structural properties of cerium oxide thin films were analyzed, and the catalytic activity of the cerium oxide for soot oxidation was investigated. Studying ALD growth conditions of cerium oxide films and determining their critical thickness range are important to maximize the catalytic performance operating at comparatively low temperature. It was found that the cerium oxide film deposited at 300 °C with 2000 ALD cycles had the highest catalytic activity. Although the activity was still moderate and did not decrease the soot oxidation temperature enough for a real-life application. The cerium oxide thin film deposited at 300 °C has a different crystal structure, surface morphology and elemental composition with a higher Ce3+ concentration compared to the films deposited at lower temperatures. The different properties of the cerium oxide thin film deposited at 300 °C increase the catalytic activity most likely due to higher surface area and addition of the oxygen vacancies.
Resumo:
L’oxydoréduction de monocouches auto-assemblées (SAMs) de ferrocénylalcanethiolates à la surface d’or (FcRSAu) a été étudiée en temps réel par la spectroscopie de résonance de plasmons de surface couplée avec l’électrochimie (E-SPR). La sensibilité de cette technique permet de déterminer des changements d’épaisseur de couche l’ordre de quelques angström résultant d’un changement de structure de la SAM. Plusieurs études antérieures ont proposé que l’oxydation électrochimique d’une SAM de FcRSAu induit une réorientation moléculaire. L’E-SPR est utilisé pour identifier l’origine de ce changement structurel. D’abord, une calibration du réfractomètre SPR utilisé a été effectuée afin de trouver une équation de conversion du signal SPR obtenu en pixel en angle d’incidence pour que l’on puisse calculer le changement d’épaisseur de monocouche à partir du changement d’angle de résonance avec le modèle de Fresnel. Par la suite, une caractérisation approfondie des SAMs de FcCnSAu (où n = 6, 8, 12, 14) en contact avec du NaClO4 acidifié a été réalisée par électrochimie, éllipsométrie, spectroscopie infrarouge et microscopie à force atomique. Les résultats obtenus montrent que l’augmentation de la longueur des chaînes alkyles donne des SAMs de ferrocènes plus épaisses et moins désordonnées. L’analyse par l’E-SPR de ces SAMs pures montre que le changement d’épaisseur induit par l’électro-oxydation dépend linéairement du nombre de méthylènes sur la chaîne alkyle. En appliquant la déconvolution mathématique aux voltampérogrammes cycliques enregistrés pour les SAM mixtes (FcC12SAu/C11SAu) de différentes compositions, on arrive à la conclusion qu’il y a un redressement des chaînes alkyles dans les domaines des ferrocènes agrégés mais la réorientation des têtes de ferrocène dans les domaines de ferrocènes agrégés ou dispersés ne peut pas être exclue. Enfin, l’effet de l’anion électrolytique sur le changement d’épaisseur de la SAM mesuré par l’E-SPR a été étudié. L’analyse électrochimique montre que la capacité de pairage d’anions avec les ferrocéniums décroit comme suit : PF6- > ClO4- > BF4- > NO3-. Tandis que l’épaisseur de la SAM donnée par le changement d’angle de résonance suit la tendance suivante : NO3- ≥ ClO4- > PF6- ≈ BF4-. Des études plus approfondies seront nécessaire pour clarifier cette tendance observée par E-SPR.
Resumo:
The present study on the vertical structure of horizontal wind variability in the surface boundary layer over Sriharikota. Based on clock wind speed and direction measuring meteorological tower facility from seven levels in the 100 m layer. The study on wind variability and elliptical approximation of wind hodographs investigated for this tropical coastal station established that Sriharikota is of meso-scale weather entity. Wind variability ratio increases from lower levels to upper levels. In South West monsoon months the station is of high ratio values and it gets affected with meso-scale weather features like thunderstorms. Average total shears are observed greater values than scalar shears. Scalar shears are high in the lowest shear levels compared to upper levels. Semi diurnal types of oscillation in average total shears are found in south west monsoon months. During cyclonic storm passage it is observed that there can be significant difference in mean wind speed from 10 m to 100 m level, but it is not so for peak wind speeds. The variations in wind variability ratio in different months is clearly depicted its strong link to define meso-scale or synoptic –scale forcing domination for this station. Meso-scale forcing is characterized by diurnal wind variability and synoptic- scale forcing by interdiurnal wind variability.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
Using a crossed-beam apparatus with a double hemispherical electron spectrometer, we have studied the spectrum of electrons released in thermal energy ionizing collisions of metastable He^*(2^3S) atoms with ground state Yb(4f^14 6s^2 ^1S_0) atoms, thereby providing the first Penning electron spectrum of an atomic target with-4f-electrons. In contrast to the HeI (58.4nm) and NeI (73.6/74.4nm) photoelectron spectra of Yb, which show mainly 4f- and 6s-electron emission in about a 5:1 ratio, the He^*(2^3S) Penning electron spectrum is dominated by 6s-ionization, acoompnnied by some correlation- induced 6p-emission (8% Yb+( 4f^14 6p^2P) formation) and very little 4f-ionization (<_~ 2.5%). This astounding result is attributed to the electron exchange mechanism for He^*(2^3S) ionization and reflects the poor overlap of the target 4f-electron wavefunction with the 1s-hole of He^*(2^3S), as discussed on thc basis of Dirac-Fock wave functions for the Yb orbitals and through calculations of the partial ionization cross sections involving semiempirical complex potentiale. The presented case may be regarded as the elearest atomic example for the surface sensitivity of He^*(2^3S) Penning ionization observed so far.
Resumo:
Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.