992 resultados para submarine landforms
Resumo:
Os processos de erosão hídrica em Cabo Verde são os mais marcantes da dinâmica actual das vertentes, pois são os mais comuns e que afectam áreas extensasdurante a curta estação húmida de três meses. A ocorrência de episódios chuvosos concentrados no tempo e com uma evidente irregularidade espacial permitem umaacentuada erosividade das precipitações, marcada por uma forte irregularidade regional. A forte variabilidade das formas de relevo, a diversidade da natureza das unidadesgeológicas e a multiplicidade de ocupação do solo favorecem condições deerodibilidade muito contrastadas no espaço. O objectivo deste trabalho é estabelecer um modelo desusceptibilidade à erosão hídricaem função de factores geomorfológicos (declive, perfil e traçado das vertentes eerodibilidade das unidades litológicas e dos materiais de cobertura), climáticos(intensidade pluviométrica) e de ocupação do solo para as bacias das ribeiras dos Picose Seca. Os resultados foram obtidos com recurso ao ambiente de Sistemas deInformação Geográfica (SIG). Este trabalho surge na sequência de outros já realizadospelos autores, onde se apresentaram as condições de erodibilidade e erosividade paraáreas mais restritas da Ilha de Santiago. O modelo de susceptibilidade à erosão hídrica resultou do cruzamento dos mapas dedeclives, de perfil e do traçado das vertentes, obtidos a partir do modelo digital deterreno (DTM), do mapa geológico, da distribuição espacial da intensidadepluviométrica e da densidade de ocupação do solo, tendo em conta que são estas asprincipais condicionantes de erosão hídrica, referidas pelos autores que estudaram estaregião. Cada um destes mapas foi reclassificado com base numa análise qualitativa dograu de erodibilidade, sendo atribuído um número de ordem a cada classe, em função da sua susceptibilidade à erosão hídrica, conforme foi localmente reconhecido. Verifica-se que as áreas de maior susceptibilidade à erosão hídrica são as do sectorsudeste da bacia da Ribeira Seca e as vertentes dos principais vales da bacia da Ribeira dos Picos, onde se encontram as unidades geológicas mais friáveis, os declives mais acentuados e onde predominam sectores das vertentes de traçado côncavo, a que seassocia pontualmente a mais elevada intensidade pluviométrica.
Resumo:
The Oman Mountains provide some of the best sections of Permian and Triassic sediments from ocean sea floor to base-of-slope environments related to the distal South Tethyan margin. The central part of the range exposes the Buday'ah section of oceanic sediments in the so-called "Hawasina allochtons". The locality of Wadi Maqam in the north-western part of the Oman Mountains is among places where the thick Permian-Triassic base-of-slope sediments is exposed (Baud et al., 2001). Overlying 400 m of middle Permian limestones and dolomites, the upper Permian sediments consist of 50 m of ≈ 10 cm thick beds of cherts and dolomites rich in sponge spicules. The top of the Permian units is well bioturbated lime mudstone-wackestone, devoid of cherts and dated as late Changhsingian (Krystyn in Richoz et al., 2005). The boundary yellow shales are overlain by very thinly bedded, laminated microbial platy lime mudstone with H. parvus. The dramatic loss of the burrowing infauna indicates the appearance of oxygen-poor water. These Induan sediments are about 25 m thick and show at the top the first calcirudites, commonly clast-supported (edge-wise conglomerates), and are characterized by tabular clasts representing the sub- in situ reworking of the laminated, platy calcilutite. The very thick Smithian overlying litho-unit (up to 900 m) marks the onset on the base-of-slope of a deep-marine basin in which carbonate submarine fan deposits developed This very thick unit consists essentially of platy limestones, calcarenites and calcirudites. It comprises mainly grey-beige calcilutite, laminated and flaggy, interbedded with sparse beds of fine-grained calcarenite in cm beds. Channelized beds of intraformational calcirudite are also part of this succession which constitutes the greater part of the outcrop available. During the Spathian to Anisian, the sedimentation changes to terrigenous mudstone and siltstone that ended with Ladinian radiolarites.
Resumo:
This paper reviews the role of alluvial soils in vegetated gravelly river braid plains. When considering decadal time scales of river evolution, we argue that it becomes vital to consider soil development as an emergent property of the developing ecosystem. Soil processes have been relatively overlooked in accounts of the interactions between braided river processes and vegetation, although soils have been observed on vegetated fluvial landforms. We hypothesise that soil development plays a major role in the transition (speed and pathway) from a fresh sediment deposit to a vegetated soil-covered landform. Disturbance (erosion and/or deposition), vertical sediment structure (process history), vegetation succession, biological activity and water table fluctuation are seen as the main controls on early alluvial soil evolution. Erosion and deposition processes may not only act as soil disturbing agents, but also as suppliers of ecosystem resources, because of their role in delivering and changing access (e.g. through avulsion) to fluxes of water, fine sediments and organic matter. In turn, the associated initial ecosystem may influence further fluvial landform development, such as through the trapping of fine-grained sediments (e.g. sand) by the engineering action of vegetation and the deposit stabilisation by the developing above and belowground biomass. This may create a strong feedback between geomorphological processes, vegetation succession and soil evolution which we summarise in a conceptual model. We illustrate this model by an example from the Allondon River (CH) and identify the research questions that follow.
Resumo:
River bifurcations are critical but poorly understood elements of many geomorphological systems. They are integral elements of alluvial fans, braided rivers, fluvial lowland plains, and deltas and control the partitioning of water and sediment through these systems. Bifurcations are commonly unstable but their lifespan varies greatly. In braided rivers bars and channels migrate, split and merge at annual or shorter timescales, thereby creating and abandoning bifurcations. This behaviour has been studied mainly by geomorphologists and fluid dynamicists. Bifurcations also exist during avulsion, the process of a river changing course on a floodplain or in a delta, which may take 102103 years and has been studied mainly by sedimentologists. This review synthesizes our current understanding of bifurcations and brings together insights from different research communities and different environmental settings. We consider the causes and initiation of bifurcations and avulsion, the physical mechanisms controlling bifurcation and avulsion evolution, mathematical and numerical modelling of these processes, and the possibility of stable bifurcations. We end the review with some open questions. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Today’s ride departs Ames and heads towards Nevada. The Ames area is one of the classic areas to view elongated hummocks. These landforms are discontinous, lower relief curvilinear ridges which are east-west trending features. At one time geologists thought these hummocks formed at the base of the glacier due to glacial movement. It is now understood that these features may have developed within the glacier, in a large crevasse field that formed behind the ice (Bemis Moraine) margin as the ice stagnated and melted.
Resumo:
Recent research has examined the factors controlling the geometrical configuration of bifurcations, determined the range of stability conditions for a number of bifurcation types and assessed the impact of perturbations on bifurcation evolution. However, the flow division process and the parameters that influence flow and sediment partitioning are still poorly characterized. To identify and isolate these parameters, three-dimensional velocities were measured at 11 cross-sections in a fixed-walled experimental bifurcation. Water surface gradients were controlled, and systematically varied, using a weir in each distributary. As may be expected, the steepest distributary conveyed the most discharge ( was dominant) while the mildest distributary conveyed the least discharge ( was subordinate). A zone of water surface super-elevation was co-located with the bifurcation in symmetric cases or displaced into the subordinate branch in asymmetric cases. Downstream of a relatively acute-angled bifurcation, primary velocity cores were near to the water surface and against the inner banks, with near-bed zones of lower primary velocity at the outer banks. Downstream of an obtuse-angled bifurcation, velocity cores were initially at the outer banks, with near-bed zones of lower velocities at the inner banks, but patterns soon reverted to match the acute-angled case. A single secondary flow cell was generated in each distributary, with water flowing inwards at the water surface and outwards at the bed. Circulation was relatively enhanced within the subordinate branch, which may help explain why subordinate distributaries remain open, may play a role in determining the size of commonly-observed topographic features, and may thus exert some control on the stability of asymmetric bifurcations. Further, because larger values of circulation result from larger gradient disadvantages, the length of confluence-diffluence units in braided rivers or between diffluences within delta distributary networks may vary depending upon flow structures inherited from upstream and whether, and how, they are fed by dominant or subordinate distributaries. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
This paper provides an extended guide to reviewing for ESPL in particular and geomorphology in general. After a brief consideration of both how we choose reviewers and why we hope that reviewers will accept, I consider what makes a fair and constructive review. I note that we aim to publish papers with the rigour (r) necessary to sustain an original and significant contribution (q). I note that judging q is increasingly difficult because of the ever-growing size of the discipline (the Q). This is the sense in which we rarely have a full appreciation of Q, and our reviews are inevitably going to contain some bias. It is this bias that cannot be avoided (cf. Nicholas and Gordon, 2011) and makes the job of ESPL's Editors of critical importance. With this in mind, I identify six elements of a good review: (1) an introductory statement that explains your assessment of your competences in relation to the manuscript (r and Q); (2) a summative view of the originality and significance of the manuscript (q) in relation to Q: (3) a summative view of the methodological rigour of the manuscript (r); (4) identification and justification of any major concerns; (5) identification of any minor issues to be corrected if you think the manuscript merits eventual publication; and (6) note of any typographical or presentation issues to be addressed although this latter activity is also an editorial responsibility. In addition, I note the importance of a constructive review, grounded in what is written in the manuscript, justified where appropriate and avoiding reference to personal views as far as is possible. I conclude with a discussion of whether or not you should sign your review openly and the importance of reviewer confidentiality. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
In the present paper the granite landforms of the Les Gavarres and Begur massifs (Girona) are described. Also the relationship between this landforms and the lithology are analysed
Resumo:
Granitic Landforms in the Ardenya Massif (Girona, Spain). In this paper the main characteristics of the granite landforms in the Ardenya massif (Girona) are described. The relationship between this landforms and the lithology are analysed
Resumo:
In the present paper, the diverse morphologies observed in the Begur Mountain Range are described and the controlling development factors and their relationships are analized. Finally, a systematics of the different rock types macro and microforms is presented
Resumo:
Late Triassic submarine alkali basalts and hawaiites were collected from two superimposed tectonic slices belonging to the Kara Dere - Sayrun unit of the Middle Antalya nappes, southwestern Turkey. New determinations on conodont faunas allow to date this sequence to the Lower Carnian (Julian). The volcanic rocks show rather homogeneous compositions, with high TiO2 and relatively low MgO and Ni contents which suggest olivine fractionation. Their primitive mantle-normalised multi-elements plots show Nb and Ta enrichments relative to La, Pb negative anomalies and heavy rare earth element and Y depletions typical of intraplate ocean island basalts. These characteristics are consistent with the major and trace element compositions of their primary clinopyroxene phenocrysts, which do not show any feature ascribable to crustal contamination. The studied lavas display a restricted range of epsilon Nd (+4.6 to +5.2) which falls within the range of ocean island basalts. Their initial (Nd-143/Nd-144)i ratios are too low to be explained by a simple mixing line between depleted MORB mantle (DMM) and HIMU components. Their Pb and Nd isotopic compositions plot along a mixing line between HIMU component and an enriched mantle, the composition of which could be the result of the addition of about 5 to 8% of an EM2 component (recycled marine sediments) to DMM. The lack of evidence for any continental crustal component. in their genesis could be consistent with their emplacement in an intra-oceanic setting.
Resumo:
Basados en la compilación de resultados de análisis sedimentológicos (granulometría, contenido orgánico) de 1191 estaciones realizadas por IMARPE, de 1975 a 2001, la compilación de información sobre el tema entre los 3°30’S y los 15°30’S y con el conocimiento de la morfología del fondo marino de esta región, se definen tres grandes áreas: al norte de los 6°15’S, de 6°15’S a 9°30’S y entre 9°30’ y 15°30’S. Entre los 3°30’ y los 6°15’S los contenidos de materia orgánica son mayores a 5% y menores a 10%, el carbono orgánico predomina con valores <1% a 2%. Los sedimentos corresponden a facies de fango y arenas, de origen terrígeno. El ancho de la plataforma es variable aproximadamente de 3 a 30 mn (14 mn promedio), la pendiente del talud superior es bastante pronunciada, presenta caídas bruscas. El relieve es disparejo, con fuertes desmembramientos en el borde exterior de la plataforma y el talud superior debido a que se encuentra surcado por cañones submarinos. En el extremo noroccidental de esta zona, se halla el Banco de Máncora cuyo fondo es rocoso e irregular. Entre los 6°30’S y los 9°30’S los contenidos de materia orgánica se incrementan de 5% a 15%, los contenidos de carbono orgánico son >2% y llegan a 5%, en algunos casos localmente superan este valor casi en tres puntos más. En los sedimentos del sector norte de esta zona predominan facies texturales de arenas y fango de origen terrígeno y también biógenos (foraminíferos), hacia el sur de esta zona predominan sedimentos de origen biogénico y autigénico (principalmente fosforita). El ancho de la plataforma se incrementa hasta alcanzar su máxima magnitud, esta es variable, aproximadamente de 22 a 70 mn. El talud superior tiene un declive moderado. El relieve del fondo marino en el borde exterior de la plataforma y talud superior se hallan surcados por cañones submarinos (7° - 9°S). Frente a Punta Chao aproximadamente a 65 mn se encuentra el Banco de Chimbote cuyo fondo es rocoso e irregular. La granulometría de los sedimentos y sus estadígrafos muestran un cambio definido desde los 10°30’S. Desde los 9°30’ a los 15°45’S los valores de materia orgánica por lo general sobrepasan el 15% y pueden alcanzar hasta 32,12%, los contenidos de carbono orgánico varían de 5% a 11,14%. En esta zona se encuentra presente, principalmente fango limoso y fango arcilloso terrígeno y biógeno (diatoméico). El ancho de la plataforma varía de modo general entre 10 y 50 mn (24 mn promedio aproximadamente). La pendiente del talud superior es suave en casi toda su extensión, el relieve del fondo marino es bastante uniforme, surcado por algunos pequeños cañones submarinos que no afectan la regularidad del relieve. De la interpretación de la data, análisis de parámetros estadísticos generados y condiciones de los sedimentos, se encontró coincidencia en la zona de la plataforma y talud superior de más de uno de los factores medio ambiente deposicional que permiten la preservación del contenido de materia orgánica tales como: Tipo y condiciones geoquímicas del sedimento y fondo marino, morfología del fondo marino, hidrodinámica, fuente de suministro, tasa de sedimentación, bioturbación.
Resumo:
We present a georeferenced photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18’N). The photomosaic was generated from digital photographs acquired using the ARGO II seafloor imaging system during the 1996 LUSTRE cruise, which surveyed a ~1 km2 zone and provided a coverage of ~20% of the seafloor. The photomosaic has a pixel resolution of 15 mm and encloses the areas with known active hydrothermal venting. The final mosaic is generated after an optimization that includes the automatic detection of the same benthic features across different images (feature-matching), followed by a global alignment of images based on the vehicle navigation. We also provide software to construct mosaics from large sets of images for which georeferencing information exists (location, attitude, and altitude per image), to visualize them, and to extract data. Georeferencing information can be provided by the raw navigation data (collected during the survey) or result from the optimization obtained from imatge matching. Mosaics based solely on navigation can be readily generated by any user but the optimization and global alignment of the mosaic requires a case-by-case approach for which no universally software is available. The Lucky Strike photomosaics (optimized and navigated-only) are publicly available through the Marine Geoscience Data System (MGDS, http://www.marine-geo.org). The mosaic-generating and viewing software is available through the Computer Vision and Robotics Group Web page at the University of Girona (http://eia.udg.es/_rafa/mosaicviewer.html)
Resumo:
This article aims to help potential authors of geomorphological articles to get their work published. It identifies the basic characteristics of a good manuscript in geomorphology in terms of: (a) originality and significance; and (b) rigour. It uses these characteristics to define how an author should structure a conventional' manuscript in geomorphology by successfully identifying and justifying the motivation for the research; clearly and fully explaining the methods used; and presenting and discussing the results obtained. The article considers the importance of published literature in sustaining all elements of a manuscript in geomorphology. It also presents the natural symmetry that should exist between parts of a manuscript. These practical elements regarding the form and content of a manuscript are then developed through: (a) flagging some of the common mistakes made by authors drawing upon my experience as Managing Editor of the journal Earth Surface Processes and Landforms; (b) discussing the ethical and legal issues, including plagiarism, that relate to manuscript submission; (c) exploring the review process from the perspective of an author, including guidance on how best to respond to review comments in revising a manuscript. Copyright (c) 2013 John Wiley & Sons, Ltd.