961 resultados para structural and ultrastructural cytochemistry
Resumo:
High-quality Ce3+-doped Y3Al5O12 (YAG:Ce3+) phosphors were synthesized by a facile sol-gel combustion method. In this sol-gel combustion process, citric acid acts as a fuel for combustion, traps the constituent cations and reduces the diffusion length of the precursors. The XRD and FT-IR results show that YAG phase can form through sintering at 900 degrees C for 2 h. This temperature is much lower than that required to synthesize YAG phase via the solid-state reaction method. There were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) observed in the sintering process. The average grain size of the phosphors sintered at 900-1100 degrees C is about 40 nm. With the increasing of sintering temperature, the emission intensity increases due to the improved crystalline and homogeneous distribution of Ce3+ ions. A blue shift has been observed in the Ce3+ emission spectrum of YAG:Ce3+ phosphors with increasing sintering temperatures from 900 to 1200 degrees C. It can be explained that the decrease of lattice constant affects the crystal field around Ce3+ ions. The emission intensity of 0.06Ce-doped YAG phosphors is much higher than that of the 0.04Ce and 0.02Ce ones. The red-shift at higher Ce3+ concentrations may be Ce-Ce interactions or variations in the unit cell parameters between YAG:Ce3+ and YAG. It can be concluded that the sol-gel combustion synthesis method provides a good distribution of Ce3+ activators at the molecular level in YAG matrix. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nonpolar a-plane (1120) ZnO thin films have been fabricated on gamma-LiAlO2 (302) substrates via the low-pressure metal-organic chemical vapor deposition. An obvious intensity variation of the E-2 mode in the Raman spectra indicates that there exhibits in-plane optical anisotropy in the a-plane ZnO thin films. Highly-oriented uniform grains of rectangular shape can be seen from the atomic force microscopy images, which mean that the lateral growth rate of the thin films is also anisotropic. It is demonstrated experimentally that a buffer layer deposited at a low temperature (200 degrees C) can improve the structural and optical properties of the epilayer to a large extent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the structural and optical properties of nonpolar m-plane GaN and GaN-based LEDs grown by MOCVD on a gamma-LiAlO2 (100) substrate. The TMGa, TMIn and NH3 are used as sources of Ga, In and N, respectively. The structural and surface properties of the epilayers are characterized by x-ray diffraction, polarized Raman scattering and atomic force microscopy (AFM). The films have a very smooth surface with rms roughness as low as 2nm for an area of 10 x 10 mu m(2) by AFM scan area. The XRD spectra show that the materials grown on gamma-LiAlO2 (100) have < 1 - 100 > m-plane orientation. The EL spectra of the m-plane InGaN/GaN multiple quantum wells LEDs are shown. This demonstrates that our nonpolar LED structure grown on the gamma-LiAlO2 substrate is indeed free of internal electric field. The current voltage characteristics of these LEDs show the rectifying behaviour with a turn on voltage of 1-3 V.
Resumo:
We prepare HfO2 thin films by electron beam evaporation technology. The samples are annealed in air after deposition. With increasing annealing temperature, it is found that the absorption of the samples decreases firstly and then increases. Also, the laser-induced damage threshold (LIDT) increases firstly and then decreases. When annealing temperature is 473K, the sample has the highest LIDT of 2.17J/cm(2), and the lowest absorption of 18 ppm. By investigating the optical and structural characteristics and their relations to LIDT, it is shown that the principal factor dominating the LIDT is absorption.
Resumo:
TiO2 films deposited by electron beam evaporation with glancing angle deposition (GLAD) technique were reported. The influence of flux angle on the surface morphology and the microstructure was investigated by scanning electron microscopy. The GLAD TiO2 films are anisotropy with highly orientated nanostructure of the slanted columns. With the increase of flux angle, refractive index and packing density decrease. This is caused by the shadowing effect dominating film growth. The anisotropic structure of TiO2 films results in optical birefringence, which reaches its maximum at the flux angle alpha = 65 degrees. The maximum birefringence of GLAD TiO2 films is higher than that of common bulk materials. It is suggested that glancing angle deposition may offer an effective method to obtain tailorable refractive index and birefringence in a large continuous range. (c) 2006 Elsevier B.V. All rights reserved.
Structural and acoustic responses of a fluid-loaded cylindrical hull with structural discontinuities
Resumo:
Hemoglobin (Hb) variability is a commonly used index of phylogenetic differentiation and molecular adaptation in fish. In the current study, the structural and functional characteristics of Hbs from two Sturgeon species of the Southern Caspian Sea Basin were investigated. After extraction and separation of hemoglobin from whole blood , the polyacrylamide gel electrophoresis (SDSPAGE), native-PAGE and isoelectric focusing (IEF) were used to confirm Hb variability in these fishes. Ion-exchange on CM-cellulose chromatography was used for purification of the dominant Hbs from these fishes. The accuracy of the methods was confirmed by IEF and SDS-PAGE. Spectral studies using fluorescence spectrophotometery, circular dichroism spectropolarimetry (CD) analysis and UV–vis spectrophotometery. Oxygen affinities of these Hbs were compared using Hb-oxygen dissociation curves. Also, the dominant Hbs from these blood fishes were utilized for further experiments. The behavior of Hbs during the denaturation process by n-dodecyl trimethylammonium bromide (DTAB) is investigated by UV–vis spectrophotometer and circular dichroism spectropolarimetry. The thermal denaturation properties of the Hbs wereinvestigated by differential scanning calorimetry (DSC) and Hbs aggregation performed chemically in the presence of dithiotreitol (DTT) by UV–vis spectrophotometer and chemometric study. The results demonstrate a significant relationship between stability of fish hemoglobins and the ability of fish for entering to deeper depths. The UV–Vis absorption spectra identified species of hemoglobin and showed the concentration of oxyHb and metHb decreases and deoxyHb increases upon interaction with DTAB. Besides the UV–vis spectrophotometry, the interaction of DTAB with hemoglobins has been studied using circular dichroism spectropolarimetry analysis. This experiment was utilized to measure the unfolding mechanism and compared alpha-helix secondary structure under different conditions for Hbs. The results reveal that the Acipenser stellatus Hb in comparison with Acipenser persicus Hb has more stability and more structural compactness. Besides, the results confirm the hypothesis that there is a meaningful relation between average habitat depth, partial oxygen pressure, oxygen affinity, structural compactness of Hb, and its stability.