984 resultados para stochastic simulation
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. ^ A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: (a) increase the efficiency of the portfolio optimization process, (b) implement large-scale optimizations, and (c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. ^ The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. ^ The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH). ^
Resumo:
Integer programming, simulation, and rules of thumb have been integrated to develop a simulation-based heuristic for short-term assignment of fleet in the car rental industry. It generates a plan for car movements, and a set of booking limits to produce high revenue for a given planning horizon. Three different scenarios were used to validate the heuristic. The heuristic's mean revenue was significant higher than the historical ones, in all three scenarios. Time to run the heuristic for each experiment was within the time limits of three hours set for the decision making process even though it is not fully automated. These findings demonstrated that the heuristic provides better plans (plans that yield higher profit) for the dynamic allocation of fleet than the historical decision processes. Another contribution of this effort is the integration of IP and rules of thumb to search for better performance under stochastic conditions.
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: a) increase the efficiency of the portfolio optimization process, b) implement large-scale optimizations, and c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH).
A new age of fuel performance code criteria studied through advanced atomistic simulation techniques
Resumo:
A fundamental step in understanding the effects of irradiation on metallic uranium and uranium dioxide ceramic fuels, or any material, must start with the nature of radiation damage on the atomic level. The atomic damage displacement results in a multitude of defects that influence the fuel performance. Nuclear reactions are coupled, in that changing one variable will alter others through feedback. In the field of fuel performance modeling, these difficulties are addressed through the use of empirical models rather than models based on first principles. Empirical models can be used as a predictive code through the careful manipulation of input variables for the limited circumstances that are closely tied to the data used to create the model. While empirical models are efficient and give acceptable results, these results are only applicable within the range of the existing data. This narrow window prevents modeling changes in operating conditions that would invalidate the model as the new operating conditions would not be within the calibration data set. This work is part of a larger effort to correct for this modeling deficiency. Uranium dioxide and metallic uranium fuels are analyzed through a kinetic Monte Carlo code (kMC) as part of an overall effort to generate a stochastic and predictive fuel code. The kMC investigations include sensitivity analysis of point defect concentrations, thermal gradients implemented through a temperature variation mesh-grid, and migration energy values. In this work, fission damage is primarily represented through defects on the oxygen anion sublattice. Results were also compared between the various models. Past studies of kMC point defect migration have not adequately addressed non-standard migration events such as clustering and dissociation of vacancies. As such, the General Utility Lattice Program (GULP) code was utilized to generate new migration energies so that additional non-migration events could be included into kMC code in the future for more comprehensive studies. Defect energies were calculated to generate barrier heights for single vacancy migration, clustering and dissociation of two vacancies, and vacancy migration while under the influence of both an additional oxygen and uranium vacancy.
Resumo:
Intelligent agents offer a new and exciting way of understanding the world of work. Agent-Based Simulation (ABS), one way of using intelligent agents, carries great potential for progressing our understanding of management practices and how they link to retail performance. We have developed simulation models based on research by a multi-disciplinary team of economists, work psychologists and computer scientists. We will discuss our experiences of implementing these concepts working with a well-known retail department store. There is no doubt that management practices are linked to the performance of an organisation (Reynolds et al., 2005; Wall & Wood, 2005). Best practices have been developed, but when it comes down to the actual application of these guidelines considerable ambiguity remains regarding their effectiveness within particular contexts (Siebers et al., forthcoming a). Most Operational Research (OR) methods can only be used as analysis tools once management practices have been implemented. Often they are not very useful for giving answers to speculative ‘what-if’ questions, particularly when one is interested in the development of the system over time rather than just the state of the system at a certain point in time. Simulation can be used to analyse the operation of dynamic and stochastic systems. ABS is particularly useful when complex interactions between system entities exist, such as autonomous decision making or negotiation. In an ABS model the researcher explicitly describes the decision process of simulated actors at the micro level. Structures emerge at the macro level as a result of the actions of the agents and their interactions with other agents and the environment. We will show how ABS experiments can deal with testing and optimising management practices such as training, empowerment or teamwork. Hence, questions such as “will staff setting their own break times improve performance?” can be investigated.
Resumo:
When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model. The purpose of simulation is either to better understand the operation of a target system, or to make predictions about a target system’s performance. It can be viewed as an artificial white-room which allows one to gain insight but also to test new theories and practices without disrupting the daily routine of the focal organisation. What you can expect to gain from a simulation study is very well summarised by FIRMA (2000). His idea is that if the theory that has been framed about the target system holds, and if this theory has been adequately translated into a computer model this would allow you to answer some of the following questions: · Which kind of behaviour can be expected under arbitrarily given parameter combinations and initial conditions? · Which kind of behaviour will a given target system display in the future? · Which state will the target system reach in the future? The required accuracy of the simulation model very much depends on the type of question one is trying to answer. In order to be able to respond to the first question the simulation model needs to be an explanatory model. This requires less data accuracy. In comparison, the simulation model required to answer the latter two questions has to be predictive in nature and therefore needs highly accurate input data to achieve credible outputs. These predictions involve showing trends, rather than giving precise and absolute predictions of the target system performance. The numerical results of a simulation experiment on their own are most often not very useful and need to be rigorously analysed with statistical methods. These results then need to be considered in the context of the real system and interpreted in a qualitative way to make meaningful recommendations or compile best practice guidelines. One needs a good working knowledge about the behaviour of the real system to be able to fully exploit the understanding gained from simulation experiments. The goal of this chapter is to brace the newcomer to the topic of what we think is a valuable asset to the toolset of analysts and decision makers. We will give you a summary of information we have gathered from the literature and of the experiences that we have made first hand during the last five years, whilst obtaining a better understanding of this exciting technology. We hope that this will help you to avoid some pitfalls that we have unwittingly encountered. Section 2 is an introduction to the different types of simulation used in Operational Research and Management Science with a clear focus on agent-based simulation. In Section 3 we outline the theoretical background of multi-agent systems and their elements to prepare you for Section 4 where we discuss how to develop a multi-agent simulation model. Section 5 outlines a simple example of a multi-agent system. Section 6 provides a collection of resources for further studies and finally in Section 7 we will conclude the chapter with a short summary.
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp). Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX) and one self-etch system (Clearfil SE Bond - SE) were employed, varying the presence or absence of an intrapulpal pressure (IPP) simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS) testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05). The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.
Resumo:
Abstract This paper aims at assessing the performance of a program of thermal simulation (Arquitrop) in different households in the city of Sao Paulo, Brazil. The households were selected for the Wheezing Project which followed up children under 2 years old to monitor the occurrence of respiratory diseases. The results show that in all three study households there is a good approximation between the observed and the simulated indoor temperatures. It was also observed a fairly consistent and realistic behavior between the simulated indoor and the outdoor temperatures, describing the Arquitrop model as an efficient estimator and good representative of the thermal behavior of households in the city of Sao Paulo. The worst simulation is linked to the poorest type of construction. This may be explained by the bad quality of the construction, which the Architrop could not simulate adequately
Resumo:
Two case studies are presented to describe the process of public school teachers authoring and creating chemistry simulations. They are part of the Virtual Didactic Laboratory for Chemistry, a project developed by the School of the Future of the University of Sao Paulo. the documental analysis of the material produced by two groups of teachers reflects different selection process for both themes and problem-situations when creating simulations. The study demonstrates the potential for chemistry learning with an approach that takes students' everyday lives into account and is based on collaborative work among teachers and researches. Also, from the teachers' perspectives, the possibilities of interaction that a simulation offers for classroom activities are considered.
Resumo:
The antimicrobial peptide indolicidin (IND) and the mutant CP10A in hydrated micelles were studied using molecular dynamics simulations in order to observe whether the molecular dynamics and experimental data could be sufficiently correlated and a detailed description of the interaction of the antimicrobial peptides with a model of the membrane provided by a hydrated micelle system could be obtained. In agreement with the experiments, the simulations showed that the peptides are located near the surface of the micelles. Peptide insertions agree with available experimental data, showing deeper insertion of the mutant compared with the peptide IND. Major insertion into the hydrophobic core of the micelle by all tryptophan and mutated residues of CP10A in relation to IND was observed. The charged residues of the terminus regions of both peptides present similar behavior, indicating that the major differences in the interactions with the micelles of the peptides IND and CP10A occur in the case of the hydrophobic residues.
Resumo:
Consider N sites randomly and uniformly distributed in a d-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last mu (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycle). For one-dimensional systems, travelers can or cannot explore all available space, giving rise to a crossover between localized and extended regimes at the critical memory mu(1) = log(2) N. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter T (temperature). In this case, the walker movement is driven by a probability density function parameterized by T and a cost function. The cost function increases as the distance between two sites and favors hops to closer sites. As the temperature increases, the walker can escape from cycles that are reminiscent of the deterministic nature and extend the exploration. Here, we report an analytical model and numerical studies of the influence of the temperature and the critical memory in the exploration of one-dimensional disordered systems.
Resumo:
Aims. We create a catalogue of simulated fossil groups and study their properties, in particular the merging histories of their first-ranked galaxies. We compare the simulated fossil group properties with those of both simulated non-fossil and observed fossil groups. Methods. Using simulations and a mock galaxy catalogue, we searched for massive (>5 x 10(13) h(-1) M-circle dot) fossil groups in the Millennium Simulation Galaxy Catalogue. In addition, we attempted to identify observed fossil groups in the Sloan Digital Sky Survey Data Release 6 using identical selection criteria. Results. Our predictions on the basis of the simulation data are: (a) fossil groups comprise about 5.5% of the total population of groups/clusters with masses larger than 5 x 10(13) h(-1) M-circle dot. This fraction is consistent with the fraction of fossil groups identified in the SDSS, after all observational biases have been taken into account; (b) about 88% of the dominant central objects in fossil groups are elliptical galaxies that have a median R-band absolute magnitude of similar to-23.5-5 log h, which is typical of the observed fossil groups known in the literature; (c) first-ranked galaxies of systems with M > 5 x 10(13) h(-1) M-circle dot, regardless of whether they are either fossil or non-fossil, are mainly formed by gas-poor mergers; (d) although fossil groups, in general, assembled most of their virial masses at higher redshifts in comparison with non-fossil groups, first-ranked galaxies in fossil groups merged later, i.e. at lower redshifts, compared with their non-fossil-group counterparts. Conclusions. We therefore expect to observe a number of luminous galaxies in the centres of fossil groups that show signs of a recent major merger.
Resumo:
Context. Fossil systems are defined to be X- ray bright galaxy groups ( or clusters) with a two- magnitude difference between their two brightest galaxies within half the projected virial radius, and represent an interesting extreme of the population of galaxy agglomerations. However, the physical conditions and processes leading to their formation are still poorly constrained. Aims. We compare the outskirts of fossil systems with that of normal groups to understand whether environmental conditions play a significant role in their formation. We study the groups of galaxies in both, numerical simulations and observations. Methods. We use a variety of statistical tools including the spatial cross- correlation function and the local density parameter Delta(5) to probe differences in the density and structure of the environments of "" normal"" and "" fossil"" systems in the Millennium simulation. Results. We find that the number density of galaxies surrounding fossil systems evolves from greater than that observed around normal systems at z = 0.69, to lower than the normal systems by z = 0. Both fossil and normal systems exhibit an increment in their otherwise radially declining local density measure (Delta(5)) at distances of order 2.5 r(vir) from the system centre. We show that this increment is more noticeable for fossil systems than normal systems and demonstrate that this difference is linked to the earlier formation epoch of fossil groups. Despite the importance of the assembly time, we show that the environment is different for fossil and non- fossil systems with similar masses and formation times along their evolution. We also confirm that the physical characteristics identified in the Millennium simulation can also be detected in SDSS observations. Conclusions. Our results confirm the commonly held belief that fossil systems assembled earlier than normal systems but also show that the surroundings of fossil groups could be responsible for the formation of their large magnitude gap.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.