980 resultados para stochastic approximation algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a study of the computational cost of the GNG3D algorithm for mesh optimization. This algorithm has been implemented taking as a basis a new method which is based on neural networks and consists on two differentiated phases: an optimization phase and a reconstruction phase. The optimization phase is developed applying an optimization algorithm based on the Growing Neural Gas model, which constitutes an unsupervised incremental clustering algorithm. The primary goal of this phase is to obtain a simplified set of vertices representing the best approximation of the original 3D object. In the reconstruction phase we use the information provided by the optimization algorithm to reconstruct the faces thus obtaining the optimized mesh. The computational cost of both phases is calculated, showing some examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stable similarity reduction of a nonsymmetric square matrix to tridiagonal form has been a long-standing problem in numerical linear algebra. The biorthogonal Lanczos process is in principle a candidate method for this task, but in practice it is confined to sparse matrices and is restarted periodically because roundoff errors affect its three-term recurrence scheme and degrade the biorthogonality after a few steps. This adds to its vulnerability to serious breakdowns or near-breakdowns, the handling of which involves recovery strategies such as the look-ahead technique, which needs a careful implementation to produce a block-tridiagonal form with unpredictable block sizes. Other candidate methods, geared generally towards full matrices, rely on elementary similarity transformations that are prone to numerical instabilities. Such concomitant difficulties have hampered finding a satisfactory solution to the problem for either sparse or full matrices. This study focuses primarily on full matrices. After outlining earlier tridiagonalization algorithms from within a general framework, we present a new elimination technique combining orthogonal similarity transformations that are stable. We also discuss heuristics to circumvent breakdowns. Applications of this study include eigenvalue calculation and the approximation of matrix functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The multitude of motif detection algorithms developed to date have largely focused on the detection of patterns in primary sequence. Since sequence-dependent DNA structure and flexibility may also play a role in protein-DNA interactions, the simultaneous exploration of sequence-and structure-based hypotheses about the composition of binding sites and the ordering of features in a regulatory region should be considered as well. The consideration of structural features requires the development of new detection tools that can deal with data types other than primary sequence. Results: GANN ( available at http://bioinformatics.org.au/gann) is a machine learning tool for the detection of conserved features in DNA. The software suite contains programs to extract different regions of genomic DNA from flat files and convert these sequences to indices that reflect sequence and structural composition or the presence of specific protein binding sites. The machine learning component allows the classification of different types of sequences based on subsamples of these indices, and can identify the best combinations of indices and machine learning architecture for sequence discrimination. Another key feature of GANN is the replicated splitting of data into training and test sets, and the implementation of negative controls. In validation experiments, GANN successfully merged important sequence and structural features to yield good predictive models for synthetic and real regulatory regions. Conclusion: GANN is a flexible tool that can search through large sets of sequence and structural feature combinations to identify those that best characterize a set of sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stochastic metapopulation model accounting for habitat dynamics is presented. This is the stochastic SIS logistic model with the novel aspect that it incorporates varying carrying capacity. We present results of Kurtz and Barbour, that provide deterministic and diffusion approximations for a wide class of stochastic models, in a form that most easily allows their direct application to population models. These results are used to show that a suitably scaled version of the metapopulation model converges, uniformly in probability over finite time intervals, to a deterministic model previously studied in the ecological literature. Additionally, they allow us to establish a bivariate normal approximation to the quasi-stationary distribution of the process. This allows us to consider the effects of habitat dynamics on metapopulation modelling through a comparison with the stochastic SIS logistic model and provides an effective means for modelling metapopulations inhabiting dynamic landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimensioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation which improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a technique for quantifying and then exploiting uncertainty in nonlinear stochastic control systems. The approach is suboptimal though robust and relies upon the approximation of the forward and inverse plant models by neural networks, which also estimate the intrinsic uncertainty. Sampling from the resulting Gaussian distributions of the inversion based neurocontroller allows us to introduce a control law which is demonstrably more robust than traditional adaptive controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a radial basis function based extension to a recently proposed variational algorithm for approximate inference for diffusion processes. Inference, for state and in particular (hyper-) parameters, in diffusion processes is a challenging and crucial task. We show that the new radial basis function approximation based algorithm converges to the original algorithm and has beneficial characteristics when estimating (hyper-)parameters. We validate our new approach on a nonlinear double well potential dynamical system.