971 resultados para statistical science
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing
Resumo:
The aim of this talk is to convince the reader that there are a lot of interesting statistical problems in presentday life science data analysis which seem ultimately connected with compositional statistics. Key words: SAGE, cDNA microarrays, (1D-)NMR, virus quasispecies
Resumo:
The amateur birding community has a long and proud tradition of contributing to bird surveys and bird atlases. Coordinated activities such as Breeding Bird Atlases and the Christmas Bird Count are examples of "citizen science" projects. With the advent of technology, Web 2.0 sites such as eBird have been developed to facilitate online sharing of data and thus increase the potential for real-time monitoring. However, as recently articulated in an editorial in this journal and elsewhere, monitoring is best served when based on a priori hypotheses. Harnessing citizen scientists to collect data following a hypothetico-deductive approach carries challenges. Moreover, the use of citizen science in scientific and monitoring studies has raised issues of data accuracy and quality. These issues are compounded when data collection moves into the Web 2.0 world. An examination of the literature from social geography on the concept of "citizen sensors" and volunteered geographic information (VGI) yields thoughtful reflections on the challenges of data quality/data accuracy when applying information from citizen sensors to research and management questions. VGI has been harnessed in a number of contexts, including for environmental and ecological monitoring activities. Here, I argue that conceptualizing a monitoring project as an experiment following the scientific method can further contribute to the use of VGI. I show how principles of experimental design can be applied to monitoring projects to better control for data quality of VGI. This includes suggestions for how citizen sensors can be harnessed to address issues of experimental controls and how to design monitoring projects to increase randomization and replication of sampled data, hence increasing scientific reliability and statistical power.
Resumo:
An important element of the developing field of proteomics is to understand protein-protein interactions and other functional links amongst genes. Across-species correlation methods for detecting functional links work on the premise that functionally linked proteins will tend to show a common pattern of presence and absence across a range of genomes. We describe a maximum likelihood statistical model for predicting functional gene linkages. The method detects independent instances of the correlated gain or loss of pairs of proteins on phylogenetic trees, reducing the high rates of false positives observed in conventional across-species methods that do not explicitly incorporate a phylogeny. We show, in a dataset of 10,551 protein pairs, that the phylogenetic method improves by up to 35% on across-species analyses at identifying known functionally linked proteins. The method shows that protein pairs with at least two to three correlated events of gain or loss are almost certainly functionally linked. Contingent evolution, in which one gene's presence or absence depends upon the presence of another, can also be detected phylogenetically, and may identify genes whose functional significance depends upon its interaction with other genes. Incorporating phylogenetic information improves the prediction of functional linkages. The improvement derives from having a lower rate of false positives and from detecting trends that across-species analyses miss. Phylogenetic methods can easily be incorporated into the screening of large-scale bioinformatics datasets to identify sets of protein links and to characterise gene networks.
Resumo:
A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.
Resumo:
We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.
Resumo:
We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.
Resumo:
Traditionally, the cusp has been described in terms of a time-stationary feature of the magnetosphere which allows access of magnetosheath-like plasma to low altitudes. Statistical surveys of data from low-altitude spacecraft have shown the average characteristics and position of the cusp. Recently, however, it has been suggested that the ionospheric footprint of flux transfer events (FTEs) may be identified as variations of the “cusp” on timescales of a few minutes. In this model, the cusp can vary in form between a steady-state feature in one limit and a series of discrete ionospheric FTE signatures in the other limit. If this time-dependent cusp scenario is correct, then the signatures of the transient reconnection events must be able, on average, to reproduce the statistical cusp occurrence previously determined from the satellite observations. In this paper, we predict the precipitation signatures which are associated with transient magnetopause reconnection, following recent observations of the dependence of dayside ionospheric convection on the orientation of the IMF. We then employ a simple model of the longitudinal motion of FTE signatures to show how such events can easily reproduce the local time distribution of cusp occurrence probabilities, as observed by low-altitude satellites. This is true even in the limit where the cusp is a series of discrete events. Furthermore, we investigate the existence of double cusp patches predicted by the simple model and show how these events may be identified in the data.
Resumo:
A number of case studies of large, transient, field-aligned ion flows in the topside ionosphere at high-latitudes have been reported, showing that these events occur during periods of frictional heating and/or intense particle precipitation. This study examines the frequency of occurrence of such events for the altitude range 200–500 km, based on 3 years of incoherent scatter data. Correlations of the upgoing ion flux at 400 km with ion and electron temperatures at lower altitudes are presented, together with a discussion of possible mechanisms for the production of such large flows. The influence of low-altitude electron precipitation on the production of these events is also considered.
Resumo:
The main goal of this work was to evaluate thermodynamic parameters of the soybean oil extraction process using ethanol as solvent. The experimental treatments were as follows: aqueous solvents with water contents varying from 0 to 13% (mass basis) and extraction temperature varying from 50 to 100 degrees C. The distribution coefficients of oil at equilibrium have been used to calculate enthalpy, entropy and free energy changes. The results indicate that oil extraction process with ethanol is feasible and spontaneous, mainly under higher temperature. Also, the influence of water level in the solvent and temperature were analysed using the response surface methodology (RSM). It can be noted that the extraction yield was highly affected by both independent variables. A joint analysis of thermodynamic and RSM indicates the optimal level of solvent hydration and temperature to perform the extraction process.
Resumo:
The use of inter-laboratory test comparisons to determine the performance of individual laboratories for specific tests (or for calibration) [ISO/IEC Guide 43-1, 1997. Proficiency testing by interlaboratory comparisons - Part 1: Development and operation of proficiency testing schemes] is called Proficiency Testing (PT). In this paper we propose the use of the generalized likelihood ratio test to compare the performance of the group of laboratories for specific tests relative to the assigned value and illustrate the procedure considering an actual data from the PT program in the area of volume. The proposed test extends the test criteria in use allowing to test for the consistency of the group of laboratories. Moreover, the class of elliptical distributions are considered for the obtained measurements. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A statistical data analysis methodology was developed to evaluate the field emission properties of many samples of copper oxide nanostructured field emitters. This analysis was largely done in terms of Seppen-Katamuki (SK) charts, field strength and emission current. Some physical and mathematical models were derived to describe the effect of small electric field perturbations in the Fowler-Nordheim (F-N) equation, and then to explain the trend of the data represented in the SK charts. The field enhancement factor and the emission area parameters showed to be very sensitive to variations in the electric field for most of the samples. We have found that the anode-cathode distance is critical in the field emission characterization of samples having a non-rigid nanostructure. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
To know how much misalignment is tolerable for a particle accelerator is an important input for the design of these machines. In particle accelerators the beam must be guided and focused using bending magnets and magnetic lenses, respectively. The alignment of the lenses along a transport line aims to ensure that the beam passes through their optical axes and represents a critical point in the assembly of the machine. There are more and more accelerators in the world, many of which are very small machines. Because the existing literature and programs are mostly targeted for large machines. in this work we describe a method suitable for small machines. This method consists in determining statistically the alignment tolerance in a set of lenses. Differently from the methods used in standard simulation codes for particle accelerators, the statistical method we propose makes it possible to evaluate particle losses as a function of the alignment accuracy of the optical elements in a transport line. Results for 100 key electrons, on the 3.5-m long conforming beam stage of the IFUSP Microtron are presented as an example of use. (C) 2010 Elsevier B.V. All rights reserved.