987 resultados para statistical methodology
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
This article reports on the results of a study undertaken by the author together with her research assistant, Heather Green. The study collected and analysed data from all disciplinary tribunal decisions heard in Queensland since 1930 in an attempt to provide empirical information which has previously been lacking. This article will outline the main features of the disciplinary system in Queensland, describe the research methodology used in the present study and then report on some findings from the study. Reported findings include a profile of solicitors who have appeared before a disciplinary hearing, the types of matters which have attracted formal discipline and the types of orders made by the tribunal. Much of the data is then presented on a time scale so as to reveal any changes over time.
Resumo:
There are complex and diverse methodological problems involved in the clinical and epidemiological study of respiratory diseases and their etiological factors. The association of urban growth, industrialization and environmental deterioration with respiratory diseases makes it necessary to pay more attention to this research area with a multidisciplinary approach. Appropriate study designs and statistical techniques to analyze and improve our understanding of the pathological events and their causes must be implemented to reduce the growing morbidity and mortality through better preventive actions and health programs. The objective of the article is to review the most common methodological problems in this research area and to present the most available statistical tools used.
Resumo:
Intelligent wheelchairs (IW) are technologies that can increase the autonomy and independence of elderly people and patients suffering from some kind of disability. Nowadays the intelligent wheelchairs and the human-machine studies are very active research areas. This paper presents a methodology and a Data Analysis System (DAS) that provides an adapted command language to an user of the IW. This command language is a set of input sequences that can be created using inputs from an input device or a combination of the inputs available in a multimodal interface. The results show that there are statistical evidences to affirm that the mean of the evaluation of the DAS generated command language is higher than the mean of the evaluation of the command language recommended by the health specialist (p value = 0.002) with a sample of 11 cerebral palsy users. This work demonstrates that it is possible to adapt an intelligent wheelchair interface to the user even when the users present heterogeneous and severe physical constraints.
Resumo:
Application of Experimental Design techniques has proven to be essential in various research fields, due to its statistical capability of processing the effect of interactions among independent variables, known as factors, in a system’s response. Advantages of this methodology can be summarized in more resource and time efficient experimentations while providing more accurate results. This research emphasizes the quantification of 4 antioxidants extraction, at two different concentration, prepared according to an experimental procedure and measured by a Photodiode Array Detector. Experimental planning was made following a Central Composite Design, which is a type of DoE that allows to consider the quadratic component in Response Surfaces, a component that includes pure curvature studies on the model produced. This work was executed with the intention of analyzing responses, peak areas obtained from chromatograms plotted by the Detector’s system, and comprehending if the factors considered – acquired from an extensive literary review – produced the expected effect in response. Completion of this work will allow to take conclusions regarding what factors should be considered for the optimization studies of antioxidants extraction in a Oca (Oxalis tuberosa) matrix.
Resumo:
Purpose - The purpose of this paper is to document the outcome of a global three-year long supply chain improvement initiative at a multi-national producer of branded sporting goods that is transforming from a holding structure to an integrated company. The case company is comprised of seven internationally well-known sport brands, which form a diverse set of independent sub-cases, on which the same supply chain metrics and change project approach was applied to improve supply chain performance. Design/methodology/approach - By using in-depth case study and statistical analysis the paper analyzes across the brands how supply chain complexity (SKU count), supply chain type (make or buy) and seasonality affect completeness and punctuality of deliveries, and inventory as the change project progresses. Findings - Results show that reduction in supply chain complexity improves delivery performance, but has no impact on inventory. Supply chain type has no impact on service level, but brands with in-house production are better in improving inventory than those with outsourced production. Non-seasonal business units improve service faster than seasonal ones, yet there is no impact on inventory. Research limitations/implications - The longitudinal data used for the analysis is biased with the general business trend, yet the rich data from different cases and three-years of data collection enables generalizations to a certain level. Practical implications - The in-depth case study serves as an example for other companies on how to initiate a supply chain improvement project across business units with tangible results. Originality/value - The seven sub-cases with their different characteristics on which the same improvement initiative was applied sets a unique ground for longitudinal analysis to study supply chain complexity, type and seasonality.
Resumo:
Laser desorption ionisation mass spectrometry (LDI-MS) has demonstrated to be an excellent analytical method for the forensic analysis of inks on a questioned document. The ink can be analysed directly on its substrate (paper) and hence offers a fast method of analysis as sample preparation is kept to a minimum and more importantly, damage to the document is minimised. LDI-MS has also previously been reported to provide a high power of discrimination in the statistical comparison of ink samples and has the potential to be introduced as part of routine ink analysis. This paper looks into the methodology further and evaluates statistically the reproducibility and the influence of paper on black gel pen ink LDI-MS spectra; by comparing spectra of three different black gel pen inks on three different paper substrates. Although generally minimal, the influences of sample homogeneity and paper type were found to be sample dependent. This should be taken into account to avoid the risk of false differentiation of black gel pen ink samples. Other statistical approaches such as principal component analysis (PCA) proved to be a good alternative to correlation coefficients for the comparison of whole mass spectra.
Resumo:
A study of tin deposits from Priamurye (Russia) is performed to analyze the differencesbetween them based on their origin and also on commercial criteria. A particularanalysis based on their vertical zonality is also given for samples from Solnechnoedeposit. All the statistical analysis are made on the subcomposition formed by seventrace elements in cassiterite (In, Sc, Be, W, Nb, Ti and V) using the Aitchison’methodology of analysis of compositional data
Resumo:
BACKGROUND Only multifaceted hospital wide interventions have been successful in achieving sustained improvements in hand hygiene (HH) compliance. METHODOLOGY/PRINCIPAL FINDINGS Pre-post intervention study of HH performance at baseline (October 2007-December 2009) and during intervention, which included two phases. Phase 1 (2010) included multimodal WHO approach. Phase 2 (2011) added Continuous Quality Improvement (CQI) tools and was based on: a) Increase of alcohol hand rub (AHR) solution placement (from 0.57 dispensers/bed to 1.56); b) Increase in frequency of audits (three days every three weeks: "3/3 strategy"); c) Implementation of a standardized register form of HH corrective actions; d) Statistical Process Control (SPC) as time series analysis methodology through appropriate control charts. During the intervention period we performed 819 scheduled direct observation audits which provided data from 11,714 HH opportunities. The most remarkable findings were: a) significant improvements in HH compliance with respect to baseline (25% mean increase); b) sustained high level (82%) of HH compliance during intervention; c) significant increase in AHRs consumption over time; c) significant decrease in the rate of healthcare-acquired MRSA; d) small but significant improvements in HH compliance when comparing phase 2 to phase 1 [79.5% (95% CI: 78.2-80.7) vs 84.6% (95% CI:83.8-85.4), p<0.05]; e) successful use of control charts to identify significant negative and positive deviations (special causes) related to the HH compliance process over time ("positive": 90.1% as highest HH compliance coinciding with the "World hygiene day"; and "negative":73.7% as lowest HH compliance coinciding with a statutory lay-off proceeding). CONCLUSIONS/SIGNIFICANCE CQI tools may be a key addition to WHO strategy to maintain a good HH performance over time. In addition, SPC has shown to be a powerful methodology to detect special causes in HH performance (positive and negative) and to help establishing adequate feedback to healthcare workers.
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
AbstractOBJECTIVEPresenting methodology for transferring knowledge to improve maternal outcomes in natural delivery based on scientific evidence.METHOD: An intervention study conducted in the maternity hospital of Itapecerica da Serra, SP, with 50 puerperal women and 102 medical records from July to November 2014. The PACES tool from Joanna Briggs Institute, consisting of pre-clinical audit (phase 1), implementation of best practice (phase 2) and Follow-up Clinical Audit (phase 3) was used. Data were analyzed by comparing results of phases 1 and 3 with Fisher's exact test and a significance level of 5%.RESULTSThe vertical position was adopted by the majority of puerperal women with statistical difference between phases 1 and 3. A significant increase in bathing/showering, walking and massages for pain relief was found from the medical records. No statistical difference was found in other practices and outcomes. Barriers and difficulties in the implementation of evidence-based practices have been identified. Variables were refined, techniques and data collection instruments were verified, and an intervention proposal was made.CONCLUSIONThe study found possibilities for implementing a methodology of practices based on scientific evidence for assistance in natural delivery.